• Title/Summary/Keyword: Heat Flux Characteristics

Search Result 745, Processing Time 0.027 seconds

A Study on the Spray Cooling Characteristics of hot Flat Plates (고온평판의 분무냉각특성에 관한 연구)

  • 윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.880-887
    • /
    • 1998
  • In order to study heat transfer characteristics of spray cooling for the purpose of uniform and soft cooling of high temperature surface a series of experiments for a hot horizontal copper flat plate was performed by downflow spray water using flat spray nozzle. Cooling curves were mea-sured under the various experimental conditions of flow rates and temperatures of cooling water Surface temperature surface heat fluxes and heat transfer coefficients of horizontal upward-facing flat surface were calculated with cooling curves measured at each radial positions near the cooling surface by TDMA method. Generally heat transfer characteristics for spray cooling is simi-lar to boiling phenomenon of pool boiling. The minimum heat flux(MHF) appear at the surface temperature of about ${\Delta}Tsat=250^{\circ}C$ and the critical heat flux(CHF) appear at about ${\Delta}Tsat=250^{\circ}C$.

  • PDF

Theoretical Analysis on Heat Transfer Characteristics and Heat Flux Performance in Ondol Systems of Dried Type (건식온돌시스템의 전열특성 및 방열성능에 관한 이론적 분석)

  • Jang, Yong-Sung;Yu, Ki-Hyung;Cho, Dong-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.176-181
    • /
    • 2007
  • This study aims to evaluate theoretically heat transfer characteristics and heat flux performance in ondol system of dried type is composed of panel of ceramics to improve of thermal conductivity and fin to expand heat. To this end, we analyzed effect of design factors(temperature of hot water, set temperature of room and thermal conductivity of finishing materials) in ondol system of dried type by heat transfer analysis. The main results of this study are summarized as follows; The deviation of heat flux and temperature was reduced by heat expansion from fin decreasing heat loss generated in air layer. The temperature and heat flux in upper finishing materials surface linearly increased according to temperature increment of hot water, but the temperature distribution in upper surface was assessed uneven. The greater heat resistance value of upper finishing materials, the deviation of maximum temperature and minimum temperature was decreased. Also, we suggested a basic design data about ondol system of dried type through an analysis of simulation results on heat transfer characteristics and heat flux performance.

  • PDF

Characteristics of Heat Transfer for Small-size Marine Diesel Engine (소형박용 디젤엔진의 전열특성)

  • 최준섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.36-42
    • /
    • 1996
  • Analysis of heat transfer on small-size Diesel engine is required for the development of high performance and efficiency engine. This basic study aims to establish heat transfer technique for marine Diesel engine. The main results from this study are as follows : 1) Overall engine heat transfer correlation of Re-Nu. 2) Radiant heat flux as fraction of total heat flux over the load range of several different Diesel engine. 3) Characteristics of heating curves on piston, cylinder liner and head. 4) Surface heat flux versus injection timing.

  • PDF

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part II: Heat Transfer Characteristics (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part II : 열전달 특성)

  • Sim, Keunseon;Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of laminar syngas/air mixture with 10% hydrogen content impinging normally to a flat plate of cylinder. Effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point and radial direction were examined experimentally by the direct photos and data acquisitions from heat flux sensor. In this work, we could find the incurved flame behavior of line shaped inner top-flame in very closed distance between flat plate and burner exit, which has been not reported from general gas-fuels. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. It was confirmed that the maximum heat flux of stagnation point in 1'st and 2'nd peaks increased with the increase of the Reynolds number due to the Nusselt number increment. There was a third maximum rise in the heat flux of stagnation point for larger separation distances and this phenomenon was different each for laminar and turbulent condition. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was investigated by the averaged heat flux value. It has been observed that the values of averaged heat flux traced well with the characteristics of major parameters and the decreasing of averaged heat flux was coincided with the decreasing trend of adiabatic temperature in spite of the same flow condition, especially for impinging distance and equivalence ratio effects.

Simulated Distribution Characteristics of Surface Temperature on Irradiating of a Laser

  • Lee, Young-Wook;Yeon, Sang-Ho
    • International Journal of Contents
    • /
    • v.5 no.2
    • /
    • pp.16-19
    • /
    • 2009
  • In this paper, we concern about the distribution characteristics of surface temperature by the increment of time, diffusivity and heat flux on irradiating of a laser. The penetration depth corresponding to the induced constant heat flux or irradiated laser, is simulated by a computer algorithm. The distribution of temperature versus penetration depth for the variation of time and diffusivity is characterized at the constant heat flux and on irradiating of a laser. The temperature of constant heat flux at the fixed diffusivity or time, is decreased by the pattern of exponential function as the time t or diffusivity a is increased (a=10, 100, 1000). The temperature of constant heat flux is not changed but exponentially fixed with the increasing diffusivity and the fixed time. On the other hand, the temperature of laser at the fixed diffusivity or time is decreased linearly. Our results show that the characteristics of the simulated surface temperature in a semi-infinite solid are similar to the graphs on theoretical consideration.

A study on the measurement of Radiative Heat flux form the flame(I) -Design and Calibration of a Heat flux meter- (화염으로부터의 복사 열유속의 계측 I)

  • 정종수;인종수;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.484-491
    • /
    • 1990
  • A heat-flux meter has been designed and manufactured to measure the heat flux from the flame. A calibration method of the heat-flux meter by a calibration furnace has also been proposed. The k-type (Chromel-Alumel) thermocouple material has been used as the material for the beat-flux meter. The electormotive force (e.m.f.) from the K-type thermocouple is shown to be linearly proportional to the heat flux absorbed. The characteristics of the heat-flux meter become better as the radius of heat absorbing disk becomes larger and its thickness thinner.

Heat Transfer Characteristics of Spray Cooling Up to Critical Heat Flux on Thermoexcel-E Enhanced Surface (Thermoexcel-E 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성)

  • Lee, Yohan;Hong, Gwang-Wook;Lee, Jun-Soo;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.373-380
    • /
    • 2016
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) are measured on a smooth square flat copper heater of $9.53{\times}9.53mm$ at $36^{\circ}C$ in a pool, a smooth flat surface and Thermoexcel-E surfaces are used to see the change in HTCs and CHFs according to the surface characteristics and FC-72 is used as the working fluid. FC-72 fluid has a significant influence on heat transfer characteristics of the spray over the cooling surface. HTCs are taken from $10kW/m^2$ to critical heat flux for all surfaces. Test results with Thermoexcel-E showed that CHFs of all enhanced surface is greatly improved. It can be said that surface form affects heat transfer coefficient and critical heat flux.

Heat Transfer Characteristics of Spray Cooling up to Critical Heat Flux on a Low-fin Enhanced Surface (Low-fin 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성)

  • Lee, Yohan;Kang, Dong-Gyu;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.522-528
    • /
    • 2013
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) were measured on a smooth square flat copper heater of $9.53{\times}9.53$ mm at $36^{\circ}C$ in a pool, with a smooth flat surface, and 26 fpi. Low-fin surfaces were used to see the change in HTCs and CHFs according to the surface characteristics, and FC-72 was used as the working fluid. FC-72 fluid had a significant influence on the heat transfer characteristics of the spray over the cooling surface. HTCs were taken from 10 $kW/m^2$ to critical heat flux, for all surfaces. Test results with Low-fin showed that the CHFs of all the enhanced surface were greatly improved. It can be said that the surface form affects the heat transfer coefficient and critical heat flux.

A Study on Heat Flux Characteristics of Tubular Quartz Lamp for Thermal Load Design of High Temperature Structural Test (석영 가열램프의 열 유속 특성 파악을 통한 고온 구조시험의 열 하중 설계에 관한 연구)

  • Kim, Junhyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2022
  • Development of supersonic flying vehicle is one of the most latest issue in modern military technology. Specifically, structural integrity of supersonic flying vehicle can be verified by high temperature structural test. High temperature structural test is required to consider thermal load caused by aerodynamic heating while applying structural load simultaneously. Tubular quartz lamps are generally used to generate thermal load by emitting infrared radiation. In this study, modified heat flux model of tubular quartz lamp is proposed based on existing model. Parameters of the proposed model are optimized upon measured heat flux in three dimensions. Finally, thermal load of plate specimen is designed by the heat flux model. In conclusion, it is possible to predict heat flux applied on plate specimen and desired thermal load of high temperature structural test can be obtained.

Characteristics of Heat Flux in a Compartment Fire - Reduced Scale Test (구획공간 화재의 열유속 특성 - 축소 실험)

  • Kim, Sung-Chan;Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.128-133
    • /
    • 2011
  • The present study performs a series of 40 % reduced scale of ISO-9705 fire test to investigate the characteristics of heat flux on the floor level in terms of fire characteristics and location in the compartment. The heat flux was measured with Schmidt-Boelter type heat flux gauge at two locations on the floor level of inside and doorway side of the compartment. Different types of fuel - methane, heptane, toluene, ethanol, polystyrene - were burned in this test series. The measured heat flux inside of the compartment was relatively higher than that of front side as the heat release rate of fire and upper layer temperature increased. The difference of measured heat flux at inside and doorway side increased for high sooty fire. The present study shows that the heat flux distribution at lower layer greatly depend on the thermal radiation from fire and upper layer, not only the upper layer temperature but also various fire characteristics such as composition of combustion gases, soot concentration, ventilation condition and so on.