• Title/Summary/Keyword: Heat Exposure

Search Result 545, Processing Time 0.032 seconds

Expression of the Heat Shock Protein 70 Gene and External Developmental Traits of Two Bivalvia Species, Crassostrea gigas and Mytilus galloprovincialis, under Aquaculture Environments (사육환경에 따른 이매패류 (Crassostrea gigas, Mytilus galloprovincialis)의 외부형질 성장과 Heat Shock Protein 70 유전자 발현)

  • Kim, Won-Seok;Park, Kiyun;Kim, Jong Kyu;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.22-30
    • /
    • 2016
  • Environmental changes exert harmful effects on organisms inhabiting coastal regions. These changes are also associated with reduced production in aquaculture farms. In this study, we investigated internal and external responses of two Bivalvia species (Crassostrea gigas and Mytilus galloprovincialis) in Gamak Bay under stressful environmental conditions in aquaculture farms. We investigated external responses such as weight, size, and environment exposure time, and analyzed the expression of the HSP70 gene. C. gigas HSP70 gene expression level was significantly high in the C3 aquaculture farm site, but the weight and size of C. gigas were high in the C2 aquaculture farm site. The response of C. gigas HSP70 mRNA was associated with the environmental exposure time in each aquaculture farm. Expression of M. galloprovincialis HSP70 gene was found to be significantly higher in the M2 aquaculture farm site than in the M1 site, whereas the weight of M. galloprovincialis was observed to be higher in the M1 site. The size and environmental exposure time of M. galloprovincialis were similar between M1 and M2 sites. In addition, HSP70 sequences of C. gigas and M. galloprovincialis showed high similarity with that of another marine species. According to our results, there were differences in internal responses following environmental stress in aquaculture farms, with respect to HSP70 gene expression. The results suggest that the HSP70 gene is a useful molecular indicator for monitoring stress responses in Bivalvia species in the field.

Comparison of Biological Responses and Heat Shock Protein 70 Expression in Chironomidae by Exposure UV and O3 (UV와 O3 노출에 따른 깔따구류의 생물학적 반응 및 열충격 단백질 70 발현)

  • Ji-Hoon Kim;Won-Seok Kim;Jae-Won Park;Bong-Soon Ko;Kiyun Park;Ihn-Sil Kwak
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.430-439
    • /
    • 2023
  • UV and O3 are materials used in the water treatment process, and many studies have been reported to remove organic matters, contaminants, and microorganisms. In this study, we were investigated effects of Chirnomidae (Chironomus flaviplumus, Chironomus riparius), which are contamination indicator species to exposure UV and O3 for the survival rate, body color change and gene expression response. The survival rate of C. flaviplumus exposed to UV decreased to about 70% after 24 hours, and C. riparius about 50%. There was no change in the survival rate of C. flaviplumus exposed to O3, and C. riparius decreased to 95% after 10 minutes of exposure, but there was no change during the subsequent exposure time. In addition, UV and O3 exposure to the two species in body color faded in a time-dependent. In the HSP70 gene expression, C. riparius showed an increase in expression after UV exposure compared to the control group, and a significant difference was shown 12 hours after exposure (P<0.05). C. flaviplumus exposed to O3 showed a relatively low expression compared to the control group, and showed a significant difference at 10 minutes and 1 hour after exposure (P<0.05). These results reported the ecotoxicological effects on Chironomidae according to UV and O3 exposure. Therefore, the results of this study can be used as basic data to understand the effects of UV and O3, which are disinfectants used in water treatment plants, on Chirnomidae entering plants.

Effects of Heat Stress and Dietary Tryptophan on Performance and Plasma Amino Acid Concentrations of Broiler Chickens

  • Tabiri, Hayford Y.;Sato, Kan;Takahashi, Kazuaki;Toyomizu, Masaaki;Akiba, Yukio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.247-253
    • /
    • 2002
  • Two experiments were conducted to investigate the impact of high temperature and dietary tryptophan (Trp) on performance, selected organ weights and plasma free amino acid (AA) concentrations in broiler chickens. In Experiment 1, exposure to $27-33^{\circ}C$ of chickens for 2 weeks from 2 weeks of age did not affect growth and plasma free AA concentration except for a decrease in the concentration of plasma tyrosine (Tyr). In Experiment 2, 2-week-old birds were allocated to one of three temperature treatments; $24^{\circ}C$ (control), $36^{\circ}C$ (heat stress, HS) and $24^{\circ}C$ pair-fed (24PF) for 2 weeks and fed on diets containing 50, 100 and 300% of NRC requirement for Trp. Heat stress caused a reduction of weight gain and feed intake irrespective of dietary Trp levels compared with control counterparts, while feeding of 300% Trp diet did not attenuate the reduced performance by HS exposure. In groups fed the 100% Trp diets, plasma aromatic AA (AAA) and Tyr concentrations were decreased in the HS birds compared with the 24PF group. Plasma concentrations in most of AA groups were increased by HS in chickens fed the 50% Trp diet, while those were not changed by HS in chickens fed the 300% Trp diet, compared with 24PF counterparts. The plasma Trp/LNAA (LNAA=large neutral AAs, which are comprised of BCAA, AAA and Trp) ratio was increased by HS in chickens fed the 100% Trp diet, while it was decreased in chickens fed on 50% Trp diet as compared with 24PF group. From these results, it is suggested that performance and plasma amino acid profile deranged by heat stress are modulated, at least, to be relieved from the heat stress by feeding 50% Trp diet but not at all by feeding 300% Trp diet. The involvement of altered plasma AA profiles, in particular plasma Tyr concentrations and Trp/LNAA ratio, is discussed in association with the performance characteristics of HS chickens.

Vulnerability Assessment to Urban Thermal Environment for Spatial Planning - A Case Study of Seoul, Korea - (공간계획 활용을 위한 도시 열환경 취약성 평가 연구 - 서울시를 사례로 -)

  • Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.109-120
    • /
    • 2016
  • This study aims to assess vulnerability in urban thermal environments of Seoul by using indicators frequently used in previous studies as well as effective indicators for spatial planning like urban and environmental planning. For this purpose, fifteen indicators that influence urban thermal environments such as heat waves, urban heat island effects, and urban micro-climates were identified based on literature reviews. Indicators for presenting urban structure and spatial properties were included; for example, building volume as 'exposure to climate', buildings completed before 1980 as 'sensitivity', and green space areas as 'adaptive capacity'. Among them, twelve indicators were applied to assess vulnerability in urban thermal environments of Seoul by using a GIS spatial analysis combined with fuzzy logic. The results show that the Gangnam area is identified as more vulnerable to a heat environment as compared to the Gangbuk area. In the Gangnam area, Seocho-gu, Gangnam-gu, Dongjak-gu, Yeongdeungpo-gu, Gangseo-gu were relatively high in vulnerability, while Dongdaemun-gu, Gangbuk-gu, Gwangjin-gu, Jungrang-gu were relatively high in the Gangbuk area. Gwanak-gu, Dobong-gu, Eunpyeong-gu, and Nowon-gu, which include forested areas, have low vulnerability in the sectors of 'exposure to climate' and 'sensitivity' due to the impact of Gwanaksan and Bukhansan. However, some areas with high vulnerability like Seocho-gu and Gangnam-gu may have lower vulnerability if the indicator 'status of air conditioning' from the sector of 'adaptive capacity' is used. This study could support the establishment of a practicable thermal environment policy and spatial planning to reduce heat-related risks in the field of urban and environmental planning.

Effect of Short-Term Weathering on Flame Retardant Performance of Korean Red Pine Wood Coated with Dancheong (단기간 풍화가 단청도채된 소나무재의 방염성능에 미치는 영향)

  • Son, Dong Won;Hong, Jong Ouk;Park, Jin Ho;Lee, Hwa Soo;Chung, Yong Jae;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.785-808
    • /
    • 2016
  • The objective of this study was to investigate the effect of the short-term weathering on the flame retardant performance of wood coated with Dancheong. Flame retardants were applied on the Dancheong coated Korean red pine. Flame retardants applied panels were layed at the two conditions of outdoor exposure and artificial aging to assess the reliability of artificial aging. Flame retardants used were commercial products developed for historical wooden buildings. Scanning electron micrographs revealed the forming of carbonized membrane by melting of flame retardant on wood surface. These carbonized membranes may help delay the further combustion of wood. Flame retardant performance was assessed by measuring heat release rate (HRR) and total heat release (THR) by cone calorimetry. There was no difference in flame retardant performance between before and after 6-month outdoor exposure tests. And also no difference in flame retardant performance between before and after 2-week artificial aging which corresponds to 6-month outdoor exposure. Both tests showed the similar results of combustion characteristics.

Characteristic and Adhesive Strength Change by Heat Treatment of the Plasma Sprayed $ZrO_{2}$- Thermal Barrier Coatings(TBC) (플라즈마 용사된 $ZrO_{2}$-단열 코팅층의 특성 및 열처리에 따른 접합강도변화)

  • Kim, Byoung-Hee;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.505-512
    • /
    • 1998
  • In this study, two-layer thermal barrier coatings composed of plasma sprayed 0.3mm $ZrO_2(8wt% Y_2o_3)$ ceramic coating layer and O.lmm $NiCrAlCoY_20_3$ bond coating layer on AISI 316 were investigated microstructure of the coating, oxidation of the metallic bond coating and adhesive strength to evaluate the durability of coating layer after cyclic and isothermal test at 90$0^{\circ}C$. And quantitative phase analysis of $ZrO_2(8wt% Y_2o_3)$ ceramic coating was performed as a function of thermal exposure time using XRD technique. The results showed that the amount of m - 2rO, phase in the coating was slightly increased with increasing thermal exposure time at 90$0^{\circ}C$. The c/a ratio of t' - $ZrO_2$ in the as-sprayed coating was 1.0099 and slightly increased to 1.0115 after 100 hours heat treatment. It was believed that $Y_2O_3$ in high yttria tetragonaJ(t') was transformed to low yttria tetragonaJ(t) by $Y_2O_3$ diffusion with increasing thermal exposure time. The adhesive strength was gradually decreased as thermal exposure time increased. After the isothermal test, the failure predominantly occured in ceramic coating layer. On the other hand. the specimens after cyclic thermal test were mostly failed at bond coating/ceramic coating interface. The failure was oeeured by decreasing the bond strength between bond coating and oxide scale which were formed by oxidation of the metallic elements within bond coating and by thermal stress due to thermal expansion mismatches between the oxide scale and ceramic coating.

  • PDF

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

Antibiotic Resistance of Salmonella spp. After Exposure to Mild Heat Treatment (살모넬라 균주들에서 열처리에 의한 항생제 내성 연구)

  • Su-Jin Kim;Woo-Suk Bang;Se-Hun Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Salmonella is widely prevalent in various environments and often detected in poultry. In this study, we investigated the effect of heat treatment on heat resistance via measuring the minimum inhibitory concentration (MIC) values of antibiotics after 3, 6, and 9 min of acclimatization to mild heat treatment (50℃) against 11 strains of Salmonella spp. Most strains were susceptible to chloramphenicol and their MIC values were maintained or decreased after heat treatment compared to the control. Most control and heat-treated strains showed susceptibility or intermediate resistance to ciprofloxacin. All isolates were susceptible to tetracycline, with the MIC increasing after heat treatment for S. Gaminara BAA 711. In the control, three, two, and six strains were susceptible, intermediate resistance, and resistant to gentamicin, respectively. Among them, S. Heidelberg ATCC 8326 had an intermediate MIC breakpoint of 8 ㎍/mL in the control; however, after 3 and 9 min of heat treatment, the MIC value increased to 16 ㎍/mL, indicating it to be resistant. The results of this study revealed the changes in antibiotic resistance in some of the 11 strains after heat treatment. MIC values of ciprofloxacin increased when S. Montevideo BAA 710 was heat treated for 3 and 6 min. MIC values of gentamicin increased after 3 min of heat treatment for S. Enteritidis 109 D1 and after 3 and 9 minutes of heat treatment for S. Heidelberg ATCC 8326. The MIC value of tetracycline increased when S. Gaminara BAA 711 was heat treated for 6 and 9 min.

Analysis of Three-Dimensional Natural Convection Using a Holographic Interferometric Tomography (홀로그래피 간섭 토모그래피를 이용한 3 차원 자연대류 해석)

  • Shim, Dong-Sik;Lee, Soo-Man;Kang, Bo-Seon;Cha, Dong-Jin;Joo, Won-Jong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.497-502
    • /
    • 2001
  • Three-dimensional natural convection from a discrete flush-mounted circular heat source on the bottom of a cubic enclosure was studied by using a holographic interferometric tomography. The heat source was located at the off-center of the bottom plate so that three-dimensional temperature field can be achieved. A set of multidirectional holographic interferogram was recorded by employing a double-reference beam, double-exposure holographic technique in order to eventually reconstruct the temperature fields. The recorded interferometric data appear good enough to be further processed to extract optical pathlength data from them and finally reconstruct the temperature fields. A complete analysis of the temperature fields including the field reconstructions and comparison with thermocouple measurements is underway and will be reported shortly.

  • PDF

Mathematical Description and Prognosis of Cell Recovery after Thermoradiation Action

  • Komarova, Ludmila N.;Kim, Jin-Kyu;Petin, Vladislav G.
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • A mathematical model for the synergistic interaction of physical and chemical environmental agents was suggested for quantitative prediction of irreversibly damaged cells after combined exposures. The model took into account the synergistic interaction of agents and was based on the supposition that additional effective damages responsible for the synergy are irreversible and originated from an interaction of ineffective sublesions. The experimental results regarding the irreversible component of radiation damage of diploid yeast cells simultaneous exposed to heat with ionizing radiation ($^{60}Co$) or UV light (254 nm) are presented. It was shown that the cell ability of the liquid holding recovery decreased with an increase in the temperature, at which the exposure was occurred. A good correspondence between experimental results and model prediction was demonstrated. The importance of the results obtained for the interpretation of the mechanism of synergistic interaction of various environmental factors is discussed.