DOI QR코드

DOI QR Code

Antibiotic Resistance of Salmonella spp. After Exposure to Mild Heat Treatment

살모넬라 균주들에서 열처리에 의한 항생제 내성 연구

  • Su-Jin Kim (Department of Food and Nutrition, Yeoungnam University) ;
  • Woo-Suk Bang (Department of Food and Nutrition, Yeoungnam University) ;
  • Se-Hun Kim (Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety)
  • 김수진 (영남대학교 식품영양학과) ;
  • 방우석 (영남대학교 식품영양학과) ;
  • 김세훈 (식품의약품안전평가원 미생물과)
  • Received : 2023.09.19
  • Accepted : 2024.01.09
  • Published : 2024.02.28

Abstract

Salmonella is widely prevalent in various environments and often detected in poultry. In this study, we investigated the effect of heat treatment on heat resistance via measuring the minimum inhibitory concentration (MIC) values of antibiotics after 3, 6, and 9 min of acclimatization to mild heat treatment (50℃) against 11 strains of Salmonella spp. Most strains were susceptible to chloramphenicol and their MIC values were maintained or decreased after heat treatment compared to the control. Most control and heat-treated strains showed susceptibility or intermediate resistance to ciprofloxacin. All isolates were susceptible to tetracycline, with the MIC increasing after heat treatment for S. Gaminara BAA 711. In the control, three, two, and six strains were susceptible, intermediate resistance, and resistant to gentamicin, respectively. Among them, S. Heidelberg ATCC 8326 had an intermediate MIC breakpoint of 8 ㎍/mL in the control; however, after 3 and 9 min of heat treatment, the MIC value increased to 16 ㎍/mL, indicating it to be resistant. The results of this study revealed the changes in antibiotic resistance in some of the 11 strains after heat treatment. MIC values of ciprofloxacin increased when S. Montevideo BAA 710 was heat treated for 3 and 6 min. MIC values of gentamicin increased after 3 min of heat treatment for S. Enteritidis 109 D1 and after 3 and 9 minutes of heat treatment for S. Heidelberg ATCC 8326. The MIC value of tetracycline increased when S. Gaminara BAA 711 was heat treated for 6 and 9 min.

Salmonella spp. 11 strains에 대해 저온 열처리(50℃) 3, 6, 9분 후 MIC값을 측정하여 항생제 내성을 알아보았다. Chloramphenicol에 대해 대조군과 열처리한 strains 대부분에서 감수성(S)이 있는 것으로 나타났고, 열처리한 strains의 MIC값은 대조군과 비교하였을 때 유지되거나 감소하였다. Ciprofloxacin에 대해 대조군과 열처리한 strains는 대부분 감수성(S)이 있거나 중간(I)을 나타냈다. Tetracycline은 모든 strains에서 감수성(S)이 있는 것으로 나타났으며, S. Gaminara BAA 711에 대해 열처리 후 MIC값이 증가하였다. Gentamicin에 대해 대조군 strains들에서 감수성을 나타낸 strains가 3 strains, 중간을 나타낸 strains 2 strains, 내성을 가진 strains가 6 strains였으며, 이 중 S. Heidelberg ATCC 8326는 MIC값을 측정했을 때 대조군에서 MIC값이 8 ㎍/mL로 MIC break point가 중간이었으나, 3분과 9분 열처리 후 MIC값이 16 ㎍/mL로 증가하여 break point가 내성을 나타냈다. 본 실험결과 Salmonella spp. 11 strains에 대해서 저온 열처리 후 열내성 효과에 의한 항생제 내성을 알아봤을 때 ciprofloxacin에서 S. Montevideo BAA 710을 3, 6분 열처리한 경우, gentamicin에서 S. Enteritidis 109 D1을 3분 처리한 경우와 S. Heidelberg ATCC 8326을 3, 9분 처리한 경우, tetracycline에서 S. Gaminara BAA 711을 6, 9분 처리한 경우 MIC값이 증가하였다. 후속 연구를 통해 Salmonella spp. strains에 대해 열처리 후 열내성 효과를 나타내는 병원성 유전자의 특성에 대한 지속적인 연구가 필요하다.

Keywords

References

  1. Almeida, I.A., Peresi, J.T., Alves, E.C., Marques, D.F., Teizeira, I.S., Silva, S.I., Pigon, S.R., Tiba, M.R., Fernades, S.A., Salmonella Alachua: causative agent of a foodborne disease outbreak. Braz. J. Infect. Dis., 19, 233-238 (2015). https://doi.org/10.1016/j.bjid.2014.12.006
  2. Ministry of Food and Drug Safety (MFDS), (2023, June 17). Statistic system. Retrieved from https://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=519&menu_grp=MENU_GRP02.
  3. Skandamis, P.N., Yoon, Y.H., Stopforth, J.D., Kendall, P.A., Sofos, J.N., Heat and acid tolerance of Listeria monocytogenes after exposure to single and multiple sublethal stresses. Food Microbiol., 25, 294-303 (2008). https://doi.org/10.1016/j.fm.2007.10.008
  4. Tiganitas, A., Zeaki, N., Gounadaki, A.S., Drosinos, E.H., Skandamis, P.N., Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium. Int. J. Food Microbiol., 31, 104-112 (2009).
  5. Gabriel, A.A., Influences of simultaneous physicochemical stresses on injury and subsequent heat and acid resistances of Salmonella Enteritidis in apple juice. Food Control, 31, 28-34 (2013). https://doi.org/10.1016/j.foodcont.2012.08.021
  6. Xu, A., Chuang, S., Scullen, O.J., Huang, L., Sheen, S., Sheen, L.Y., Johnson, J.R., Sommers, C.H., Thermal inactivation of extraintestinal pathogenic Escherichia coli suspended in ground chicken meat. Food Control, 104, 269-277 (2019). https://doi.org/10.1016/j.foodcont.2019.05.001
  7. Chen, Z., Stress responses of foodborne pathogens and implications in food safety. J. Food Microbiol. Saf. Hyg., 2, E103 (2017).
  8. Beales, N., Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr. Rev. Food Sci. Food Saf., 3, 1-20 (2004). https://doi.org/10.1111/j.1541-4337.2004.tb00057.x
  9. Hill, C., Cotter, P.D., Sleator, R.D., Gahan, C.G.M., Bacterial stress response in Listeria monocytogenes: Jumping the hurdles imposed by minimal processing. Int. Dairy J., 12, 273-283 (2002). https://doi.org/10.1016/S0958-6946(01)00125-X
  10. Kim, J.Y., Song, H.N., Kim, D.B., Lee, S.Y., Physiological changes and stress responses of heat shock treated Salmonella enterica serovar Typhimurium. Food Control, 124, 107915 (2021).
  11. Hassan, H., Iskandar, C.F., Hamzeh, R., Malek, N.J., Khoury, A.E., Abiad, M.G., Heat resistance of Staphylococcus aureus, Salmonella spp., and Escherichia coli isolated from frequently consumed foods in the Lebanese market. Int. J. Food Prop., 25, 2435-2444 (2022). https://doi.org/10.1080/10942912.2022.2143521
  12. Dawoud, T.M., Davis, M.L., Park, S.H., Kim, S.A., Kwon Y.M., Jarvis, N., O'Bryan, C.A., Shi, Z., Crandall, P.G., Ricke, S.C., The potential link between thermal resistance and virulence in Salmonella: A review. Front. Vet. Sci., 4, 93 (2017).
  13. Guillen, S., Nadal, L., Alvarez, I., Manas, P., Cebrian, G., Impact of the resistance response to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal Salmonellae. Foods, 10, 617 (2021).
  14. Sirsat, S.A., Burkholder, K.M., Muthaiyan, A., Dowd, S.E., Bhunia, A.K., Ricke, S.C., Effect of sublethal heat stress on Salmonella Typhimurium virulence. J. Appl. Microbiol., 110, 813-822 (2011). https://doi.org/10.1111/j.1365-2672.2011.04941.x
  15. Kobayashi, H., Miyamoto, T., Hashimoto, Y., Kiriki, M., Motomatsu, A., Honjoh, K., Lio, M., Identification of factors involved in recovery of heat-injured Salmonella Enteritidis. J. Food Prot., 68, 932-941 (2005). https://doi.org/10.4315/0362-028X-68.5.932
  16. Spector, M.P., Kenyon, W.J., Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Res. Int., 45, 455-481 (2012).
  17. Schwarz, S., Kehrenberg, C., Salsh, T.R., Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Agents, 17, 431-437 (2001). https://doi.org/10.1016/S0924-8579(01)00297-7
  18. Hamer, D.H., Grill, C.J., From the farm to the kitchen table: the negative impact of antimicrobial use in animals on humans. Nutr. rev., 60, 261-264 (2002). https://doi.org/10.1301/002966402320289395
  19. Cheong, Y.W., Characterization of Salmonella isolated from chicken slaughterhouses during 2018-2019 in Korea. Master thesis, University of Kangwon, Chuncheon, Korea (2021).
  20. Alekshun, M.N., Levy, S.B., Moledular mechanisms of antibiacterial multidrug resistance. Cell, 128, 1037-1050 (2007). https://doi.org/10.1016/j.cell.2007.03.004
  21. Marmion, M., Macori, G., Ferone, M., Whyte, P., Scannell, A.G.M., Survive and thrive: Control mechanisms that facilitate bacterial adaptation to survive manufacturing-related stress. Int. J. Food Microbiol., 368, 109612 (2022).
  22. Wu, S., Yang, Y., Wang, T., Sun, J., Zhang, Y., Ji, J., Sun, X., Effects of acid, alkaline, cold, and heat environmental stresses on the antibiotic resistance of the Salmonella enterica serovar Typhimurium. Food Res. Int., 144, 110359 (2021).
  23. Wang F., Fu, Y., Lin, Z., Zhang, B., Se, J., Guo, X., Fan, J., Jia, Y., Xu, X., Jiang, Y., Shen, C., Neglected drivers of antibiotic resistance: survival of extended spectrum β-Lactamase-producing pathogenic Escherichia coli from livestock waste through dormancy and release of transformable extracellular antibiotic resistance genes under heat treatment. Environ. Sci. Technol., 57, 9955-9964 (2023). https://doi.org/10.1021/acs.est.3c02377
  24. Akhtar, M., Maserati, A., Diez-Gonzalez, F., Sampedro, F., Does antibiotic resistance influence shiga-toxigenic Escherichia coli O26 and O103 survival to stress environments? Food Control, 68, 330-336 (2016). https://doi.org/10.1016/j.foodcont.2016.04.011
  25. Ma, Y., Lan, G., Li, C., Cambaza, E.M., Liu, D., Ye, X., Chen, S., Ding, T., Stress tolerance of Staphylococcus aureus with different antibiotic resistance profiles. Microb. Pathog., 133, 103549 (2019).
  26. Al-Nabulsi, A.A., Osaili, T.M., Shaker, R.R., Olaimat, A.N., Jaradat, Z.W., Elabedeen, N.A.Z., Holley, R.A., Effects of osmotic pressure, acid, or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiol., 46, 154-160 (2015). https://doi.org/10.1016/j.fm.2014.07.015
  27. Al-Nabulsi, A.A., Osaili, T.M., Elabedeen, N.A.Z., Jaradat, Z.W., Shaker, R.R., Kheirallah, K.A., Tarazi, Y.H., Holley, R.A., Effect of environmental stress desiccatiion, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakakzakii. Food Microbiol., 146, 137-143 (2011). https://doi.org/10.1016/j.ijfoodmicro.2011.02.013
  28. Fong, K., Wang, S., Heat resistance of Salmonella enterica is increased by pre-adaptation to peanut oil or sub-lethal heat exposure. Food Microbiol., 58, 139-147 (2016). https://doi.org/10.1016/j.fm.2016.04.004
  29. Jiao, S., Zhang, H., Liao, M., Hayouka, Z., Jing P., Investigation of the potential direct and cross protection effects of sublethal injured Salmonella Typhimurium induced by radio frequency heating stress. Food Res. Int., 150, 110789 (2021).
  30. Guillen, S., Marcen, M., Alvarez, I., Manas, P., Cebrian, G., Stress resistance of emerging poultry-associated Salmonella serovars. Int. J. Food Microbiol., 335, 108884 (2020).
  31. Nair, D.V.T., Venkitanarayanan, K., Johny, A.K., Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7, 167 (2018).
  32. Kim, S.H., Park, E.H., Hwang, I.Y., Lee, H.M., Song, S.A., Lee, M.A., Lee, S.O., Kim, S.Y., Kim, J.J., Shin, J.H., Hong S.G., Shin, K.S., Kim, S.J., Ryoo, N.H., Lee, W.H., Jang, S.J., Shin, J.H., Serotyping and antimicrobial susceptibility of Salmonella isolated in Korea in 2015. Ann. Clin. Microbiol., 22, 55-60 (2019). https://doi.org/10.5145/ACM.2019.22.3.55
  33. Park, E.H., Shin J.H., Park, Y.K., Park, S.H., Sung G.H., Hwang, I.Y., Park, H.Y., Jo H.C., Korean nationwide surveillance for serotyping and antimicrobial susceptibility of Salmonella species. The annual report of Busan metropolitan city institute of health & environment, 24, 28-39 (2014).
  34. McMahon, M.A.S., Xu, J., Moore, J.E., Blair, I.S., McDowell, D.A., Environmental stress and antibiotic resistance in food-related pathogens. Appl. Environ. Microbiol., 73, 211-217 (2007). https://doi.org/10.1128/AEM.00578-06
  35. Shaker, R.R., Osaili, T.M., Abu Al-Hasan, A.S., Ayyash, M.M., Forsythe, S.J., Effect of desiccation, starvation, heat, and cold stresses on the thermal resistance of Enterobacter sakazakii in rehydrated infant milk formula. J. Food Sci., 73, M354-M359 (2008). https://doi.org/10.1111/j.1750-3841.2008.00880.x
  36. Clinical and Laboratory Standards Institute (CLSI), 2021. Performance standards for antimicrobial susceptibility testing, 31th ed, CLSI, Berwyn, PA, USA, pp. 43-45.
  37. Etter, A.J., West, A.M., Burnett, J.L., Wu, S.T., Veenhuizen, D.R., Ogas, R.A., Oliver, H.F., Salmonella enterica subsp. enterica Serovar Heidelberg food isolates associated with a salmonellosis outbreak have enhanced stress tolerance capabilities. Appl. Environ. Microbiol., 85, e1065-19 (2019).
  38. Noriega, E., Velliou, E., Van Derlinden E., Mertens, L., Van Impe, J.F.M., Effect of cell immobilization on heat-induced sublethal injury of Escherichia coli, Salmonella Typhimurium and Listeria innocua. Food Microbiol., 36, 355-364 (2013). https://doi.org/10.1016/j.fm.2013.06.015
  39. Boziaris, I.S., Humpheson, L., Adams, M.R., Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. Int. J. Food Microbiol., 43, 7-13 (1998). https://doi.org/10.1016/S0168-1605(98)00083-X
  40. Kremer, L., Guerardel, Y., Gurchas, S.S., Locht, C., Besra, G.S., Temperature induced changes in the cell-wall components of Mycobacterium thermoresistibile. Microbiology, 148, 3145-3154 (2002). https://doi.org/10.1099/00221287-148-10-3145
  41. Lin, J., Nishino, K., Roberts, M.C., Tolmasky, M., Aminov, R.I., Zhang, L., Mechanisms of antibiotic resistance. Front. Microbiol., 6, 34 (2015).
  42. Peng, M., Salaheen, S., Buchanan, R.L., Biswas, D., Alterations of Salmonella enterica serovar Typhimurium antibiotic resistance under environmental pressure. Appl. Environ. Microbiol., 84, e01173-18 (2018).