• 제목/요약/키워드: Heat Exchanger Optimization

검색결과 94건 처리시간 0.031초

딤플이 있는 판형 열교환기 관내측 열유동 최적화 (A numerical study for optimizing the thermal and flow performance in the channel of plate heat exchanger with dimples)

  • 이관수;시종민;정길완
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.700-708
    • /
    • 1999
  • The optimum dimple shape and arrangement in the channel of a plate heat exchanger with staggered dimples are proposed in this study. Four important geometric parameters are selected as design variables, the pressure drop and heat transfer characteristics are examined in the channel of plate heat exchangers. The optimization is accomplished by minimizing the global criterion function which consists of the correlations of Nusselt number and pressure drop. The optimum geometric parameters were found at the dimensionless dimple distance (L) of 0.272, the dimensionless dimple angle ($\beta$) of 0.44, the dimensionless dimple volume (V) of 0.106 and the dimensionless dimple pitch (G) of 0.195. It is found that the heat transfer and pressure drop of the optimum model are increased by approximately 227.9% and 32.9%, respectively, compared to those of the base model.

  • PDF

와류발생기가 부착된 열교환기 최적설계 (Optimal Design of a Heat Exchanger with Vortex Generator)

  • 박경우;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1219-1224
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for thermal stability is conducted numerically. To acquire the optimal design variables, the CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method. The results show that when the temperature rise is less than 40 K, the optimal design variables are as follows; $B_1=2.584mm$, $B_2=1.741mm$, and t = 7.914 mm. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The Pareto optimal solutions are also presented between the pressure drop and the temperature rise.

  • PDF

Optimal synthesis and design of heat transfer enhancement on heat exchanger networks and its application

  • Huang, Zhao-qing
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.376-379
    • /
    • 1996
  • Synthesis for qualitative analysis in connection with quantitative analysis from the pinch design method, EVOP and Operations Research is proposed for the optimal synthesis of heat exchanger networks, that is through of the transportation model of the linear programming for synthesizing chemical processing systems, to determine the location of pinch points, the stream matches and the corresponding heat flowrate exchanged at each match. In the second place, according to the optimization, the optimal design of heat transfer enhancement is carried on a fixed optimum heat exchanger network structure, in which this design determines optimal operational parameters and the chosen type of heat exchangers as well. Finally, the method of this paper is applied to the study of the optimal synthetic design of heat exchanger network of constant-decompress distillation plants.

  • PDF

경험법칙과 계의 분리법을 통한 최적 열교환망 합성 (Optimal heat exchanger network synthesis through heuristics and system separation method)

  • 이해평;류경옥
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.119-126
    • /
    • 1995
  • The purpose of this study is to develop the technique of energy recovery and energy saving by using the optimization of heat exchanger network synthesis. This article proposes a new method of determining the optimal target of a heat exchanger network synthesis problem of which data feature multiple pinch points. The system separation method we suggest here is to subdivide the original system into independent subsystems with one pinch point. The optimal cost target was evaluated and the original pinch rules at each subsystem were employed. The software developed in this study was applied to the Alko prosess, which is an alcohol production process, for the synthesis of heat exchanger network. It was possible to save about 15% of the total annual cost.

  • PDF

The optimization for the straight-channel PCHE size for supercritical CO2 Brayton cycle

  • Xu, Hong;Duan, Chengjie;Ding, Hao;Li, Wenhuai;Zhang, Yaoli;Hong, Gang;Gong, Houjun
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1786-1795
    • /
    • 2021
  • Printed Circuit Heat Exchanger (PCHE) is a widely used heat exchanger in the supercritical carbon dioxide (sCO2) Brayton cycle because it can work under high temperature and pressure, and has been a hot topic in Next Generation Nuclear Plant (NGNP) projects for use as recuperators and condensers. Most previous studies focused on channel structures or shapes. However, no clear advancement has so far been seen in the allover size of the PCHE. In this paper, we proposed an optimal size of the PCHE with a fixed volume. Two boundary conditions of PCHE were simulated, respectively. When the volume of PCHE was fixed, the heat transfer rate and pressure loss were picked as the optimization objectives. The Pareto front was obtained by the Multi-objective optimization procedure. We got the optimized number of PCHE channels under two different boundary conditions from the Pareto front. The comprehensive performance can be increased by 5.3% while holding in the same volume. The numerical results from this study can be used to improve the design of PCHE with straight channels.

가용에너지를 이용한 대향류 열교환기의 해석 (Analysis of Counterflow Heat Exchangers with the Concept of Available Energy)

  • 김수연;정평석
    • 대한기계학회논문집
    • /
    • 제16권11호
    • /
    • pp.2189-2195
    • /
    • 1992
  • 본 연구에서는 대향류 열교환기에 대하여 출력과 효율 등을 계산하는 예를 보 이고, 동시에 최대의 출력을 얻기 위한 조건들을 수치적으로 구하였다. 또한 열교환 기의 장치비용과 열원의 생성비용을 적절히 취급하여 경제적 최적조건에 대해서도 살 펴보고자 한다. 여기서 저온유체의 가용 에너지 획득량으로서 출력은 열전달로 인한 부분만을 생각하기로 한다.

예혼합 가스버너와 열교환기의 최적화 연구 (The Study on the Optimization of Premixed Gas Burner and Heat Exchanger)

  • 이강주;장기현;이창언
    • 한국가스학회지
    • /
    • 제7권4호
    • /
    • pp.7-13
    • /
    • 2003
  • 본 연구에서는 연소가스의 잠열을 활용함으로서 에너지를 절약하고 배기가스 속의 오염 물질을 저감할 수 있는 콘덴싱 가스보일러의 예혼합버너와 열교환기를 최적화하기 위한 실험을 수행하였다. 본 연구에서 사용된 가스보일러의 열교환기는 상부, 하부 및 코일 열교환기 3개부분으로 구성되어 있다. 상부 열교환기는 예혼합버너를 둘러싸고 있으며 하부 열교환기는 상부열교환기 하단에 설치되어 있다. 그리고, 코일형 열교환기는 상부와 하부열교환기의 바깥 표면을 감싸고 있는 구조로 되어 있다. 본 연구를 통하여 설계된 보일러의 TDR은 당량비 0.75${\~}$0.80 부근에서 약 4:1이며 열효율이 $97\%$로 나타났다. 또한, NOx 및 CO 배출농도는 당량비 0.8 부근에서 각각 20ppm과 140ppm의 낮은 수치를 보였으며 버너의 직경을 기존의 60mm에서 50mm로 변경한 결과, CO의 배출농도가 50ppm까지 현저히 낮아짐을 알 수 있었다.

  • PDF

만족도 함수를 이용한 평행류 열교환기 설계인자 최적화 (Optimal Design Variables of a Parallel-Flow Heat Exchanger by Using a Desirability Function Approach)

  • 오석진
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.587-595
    • /
    • 2005
  • The heat and flow characteristics in a parallel-flow heat exchanger were examined numerically to obtain its optimal design variables. A desirability function approach was introduced to optimize its performance with respect to the design parameters over the design domain. By varying the importance of heat transfer and pressure drop which are out put variables, the optimal values of the design parameters are examined. As a result, the us-age of the desirability function is very effective for the optimization of the design variables in a heat exchanger since the changes of optimal values are physically appropriate by varying the importance of each output variable.

Study on three-dimensional numerical simulation of shell and tube heat exchanger of the surface ship under marine conditions

  • Yi Liao;Qi Cai;Shaopeng He;Mingjun Wang;Hongguang Xiao;Zili Gong;Cong Wang;Zhen Jia;Tangtao Feng;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1233-1243
    • /
    • 2023
  • Shell-and-tube heat exchanger (STHX) is widely used by virtue of its simple structure and high reliability, especially in a space-constrained surface ship. For the STHX of the surface ship, roll, pitch and other motion of the ship will affect the heat transfer performance, resistance characteristics and structural strength of the heat exchanger. Therefore, it is urgent to carry out numerical simulation research on three-dimensional thermal hydraulic characteristics of surface ship STHX under the marine conditions. In this paper, the numerical simulation of marine shell and tube heat exchanger of surface ship was carried out using the porous media model. Firstly, the mathematical physical model and numerical method are validated based on the experimental data of a marine engine cooling water shell and tube heat exchanger. The simulation results are in good agreement with the experimental results. The prediction errors of pressure drop and heat transfer are less than 10% and 1% respectively. The effect of marine conditions on the heat transfer characteristics of the heat exchanger is investigated by introducing the additional force model of marine condition to evaluate the effect of different motion parameters on the heat transfer performance of the heat exchanger. This study could provide a reference for the optimization of marine heat exchanger design.

유한요소법과 실험계획법을 이용한 고온 열교환기용 S-관의 형상 최적화 (Shape Optimization of S-tube for Heat Exchanger Used in High Temperature Environment Using FE Analysis and DOE)

  • 정호승;조종래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.497-503
    • /
    • 2012
  • 본 연구의 목적은 고온, 고압 환경에서 사용되는 열교환기의 전열관에서 발생되는 열팽창에 따른 열응력, 진동과 같은 기계적 특성을 개선시키고, 전열부 체적을 최소화시키는 관점에서 실험계획법을 이용하여 구불구불한 관 형상에 대하여 형상최적화를 수행하였다. S-관 형상에 대하여 부분별 용도를 제시하였고, 형상 최적화를 위해서 형상변수 및 범위를 정한 후, 유한요소해석을 수행하여 형상변수에 따른 구조적 특성을 평가하였고, 요인배치법을 이용하여 형상변수의 주효과를 분석한 후, 반응표면법(Response surface Methodology)을 이용하여 회귀방정식을 구하고, 최적화 툴을 이용하여 최적화를 수행하였다.