• Title/Summary/Keyword: Heat Exchanger Efficiency

Search Result 488, Processing Time 0.026 seconds

Performance Characteristics of Plate Heat Exchangers with Various Geometric Design Parameters (기구적 설계변수에 따른 판형열교환기의 성능특성)

  • Son, Jae-Wook;Lee, Eung-Chan;Kang, Hoon;Kim, Yong-Chan;Kim, Jung-Kyu;Cho, Sung-Youl;Park, Jae-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.583-591
    • /
    • 2012
  • Plate heat exchangers have been widely used in many industrial applications because of their compactness and high efficiency. Even though plate heat exchangers have been investigated extensively, studies on the effects of geometric parameters other than the chevron angle are very limited in the open literature. In this study, the effects of the chevron angle, corrugation length, corrugation depth, and the number of plates on the heat transfer and pressure drop characteristics of plate heat exchangers were investigated experimentally. Based on the experimental results, empirical correlations were proposed. More than 95% of the predictions made based on the correlations had relative deviations of less than ${\pm}10%$ when compared with the measured data.

Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant (석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구)

  • Lee, Chan;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Parametric studies are conducted for optimizing the integration design between gas turbine compressor and air separation unit (ASU) of integrated gasification combined cycle power plant. The present study adopts the ASU of double-distillation column process, from which integration conditions with compressor such as the heat exchanger condition between air and nitrogen, the amount and the pressure of extracted air are defined and mathematically formulated. The performance variations of the compressor integrated with ASU are analyzed by combining streamline curvature method and pressure loss models, and the predicted results are compared with the performance test results of actual compressors to verify the prediction accuracy. Using the present performance prediction method, the effects of pinch-point temperature difference (PTD) in the heat exchanger, the amount and the pressure of extracted air on compressor performances are quantitatively examined. As the extraction air amount or the PTD is increased, the pressure ratio and the power consumption of compressor are increased. The compressor efficiency deteriorates as the increase of the flow rate of air extracted at higher pressure level while improving at lower pressure air extraction. Furthermore, through the characteristic curve between generalized inlet condition and efficiency of compressor, optimal integration condition is presented to maximize the compressor efficiency.

  • PDF

A Study on the Combustion Characteristics of Flat-Plate Premixed Burner for Various Flame Surface Media and Heat Exchangers (평판형 예혼합 버너의 다양한 화염면 매질 및 열교환기에 따른 연소 특성)

  • Cho, Eun-Seong;Park, Chang-Kwon;Choi, Kyung-Suhk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1033-1040
    • /
    • 2011
  • The premixed burner is a very strong candidate for using household boiler burner system because it has high efficiency, low emission and can be used in compact boiler system. Usually, household boiler burner systems use a Bunsen burner, which consists of an inner rich premixed flame and fuel burned completely by a secondary air supply. It has a relatively long flame length and operates in a high excess of air, so it is difficult to fit such a burner into a high efficiency compact boiler. In this paper, the characteristics of a premixed combustion burner for surface media such as metal fiber, ceramic, and SUS fin were evaluated. In particular, the flow velocity over the burner surface for the cold flow characteristics of the surface material were measured and adjusted. The combustion tests were carried out by taking pictures of the flame and measuring the flame temperature. The amounts of CO and NO were measured and the characteristics of the surface burner materials, combustion chamber, and heat exchangers were evaluated for various excess air ratios and heating values.

Analysis of demonstration research on solar heat pump system for room and hot water heating in the southern part of South Korea (남부지역의 태양열이용 열펌프식 온수.난방시스템의 실증연구 분석)

  • Sun, Kyung Ho;Kim, Ki Sun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.198.1-198.1
    • /
    • 2010
  • The goal of this study is to measure and compare the performance of solar heat pump for room and hot water heating. To accomplish the goal, solar heat pump with alumium roll bond type evaporator and indoor heat exchanger(condenser) was built and fully instrumented with thermocouples and pressure transducers etc. The test results showed that the COP(coefficient of performance) of HFC-134a($CF_3CH_2F$) were higher than those of CFC-12($CF_2Cl_2$). One "stratospherically safe" new refrigerant is 1,1,1,2-tetrafluoroethane(HFC-134a), which is thermodynamically similar to CFC-12 and considered to be a potential direct replacement for CFC-12 in air-conditioning and refrigeration applications. The solar heat pump system for room heating was designed to show the best efficiency that the room temperature make $18{\sim}20^{\circ}C$ and $23{\sim}25^{\circ}C$ in the southern part of South Korea during November, December, and January.

  • PDF

A Study on Performance Characteristics of Heat Pump System on Cooling Mode for Light-duty Commercial Electric Vehicles (EV 상용차용 히트펌프 시스템 냉방 운전 특성에 관한 연구)

  • Jeon, Hanbyeol;Kim, Jung-Il;Won, Hun-Joo;Lee, Ho-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.69-75
    • /
    • 2019
  • The cooling performance of heat pump system for light-duty commercial electric vehicle was evaluated experimentally. The cooling performance characteristics of the heat pump for light-duty commercial electric vehicles were evaluated by varying the temperature, flow rate of chiller coolant, and electric compressor speed, under the exterior air temperature of 35 ℃ and interior air temperature of 25 ℃. Increasing the compressor speeds decreased the cooling system efficiency by 16.4 % on average with the cooling capacity increasing by 8.0 % on average and the compressor work increasing by 27% on average. To use waste heat from the coolant to chill power electronic components, such as the motor and inverter, a chiller was installed to transfer heat between the coolant and refrigerant. Increasing the temperature of the chiller coolant from 35 ℃ to 55 ℃ decreased the efficiency by 18.2 % on average due to higher condensing heat source. Increasing the coolant flow rate from 10 liter/min to 20 liter/min did not affect the cooling capacity of the system due to a similar total condensing heat transfer rate at the chiller and the exterior heat exchanger. In future works, heating performance will be investigated by varying the operating conditions to use the chiller's waste heat with an improvement of heating capacity.

An Experimental Study on Performance Characteristics of Refrigeration System Using R134a Refrigerating System (R134a를 이용한 냉동장치의 성능특성에 관한 실험적 연구)

  • Kim, Jin-Hyun;Kim, Jong-Kil;Kim, Sung-Bae;Ha, Ok-Nam
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2188-2193
    • /
    • 2007
  • Since the use of CFCs and HCFCs refrigerants are to be restricted due to the depletion of ozone layer, this experiment applies the R134a gas to study the performance characteristic from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 1.5 MPa to 1.6 MPa by 0.05 MPa and for superheat temperature from 0$^{\circ}C$ to 5$^{\circ}C$ by 1$^{\circ}C$ at each condensing pressure. As a result of experiment, when the superheat temperature is 1$^{\circ}C$ at each condensing pressure, the refrigeration system has the highest performance.

  • PDF

Development of A Hot Water Boiler System with A Rice Hull Furnace -Development of A Mathematical Model of Simulation- (왕겨 연소기(燃燒機)를 이용(利用)한 온수(温水)보일러 시스템 개발(開發)(II) -시뮬레이션 모형(模型) 개발(開發)-)

  • Park, S.J.;Noh, S.H.;Lee, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.4
    • /
    • pp.30-37
    • /
    • 1988
  • A mathematical model was developed and programmed for computer simulation of a prototype hot water boiler system with rice hull furnace to predict the temperature distributions in the rice hull furnace and water tank, mass flow rate of hot water and thermal efficiency of the system under various operation and design conditions. The effects of feed rate of rice hull, thickness of the furnace wall, the type of heat exchanger, diameter of the water circulation pipe, etc, on the performance of the system can be evaluated with this model. The validity and simulation results of this model will be published in the next paper.

  • PDF

The Study on Performance Characteristics of NH3 Refrigeration System Using Optimum Heat Exchanger (고밀도 열교환기를 이용한 $NH_3$냉동장치의 성능 특성 연구)

  • Lee, Seung-Jae;Jeon, Sang-Sin;Kwon, Il-Wook;Lee, Jong-In;Ha, Ok-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1276-1281
    • /
    • 2004
  • Nowadays CFCs and HCFCs refrigerants are restricted because it cause depletion of ozone layer. Accordingly, this experiment apply the ammonia gas and not CFCs and HCFCs for refrigerant to study the performance characteristic from the superheat control and improve the energy efficiency from the high performance. The condensing pressure of refrigeration system is increased from 15.0bar to 16bar by 0.5bar and superheat temperature is increased from $0^{\circ}C$ to $10^{\circ}C$ by $1^{\circ}C$ at each condensing pressure. As the result of experiment, when the superheat temperature is $0^{\circ}C$ at each condensing pressure, the refrigeration system has the high performance.

  • PDF

Simulation of the Characteristics of High-Performance Absorption Cycles (고성능 흡수냉동 사이클의 특성 시뮬레이션)

  • 윤정인;오후규;이용화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.231-239
    • /
    • 1995
  • This paper describes a computer simulation of the triple effect, water-lithium bromide absorption cooling cycles. The performance of the absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature, the working solution concentrations, the ratio of the amount of the weak solution to the high, middle and low temperature generators, and the temperature difference of each solution heat exchanger. The efficiency of different cycles has been studied and the simulation results show that higher coefficient of performance could be obtained for the parallel cycle of constant solution distribution rate. As a result of this analysis, the optimum designs and operating conditions were determined based on the operating conditions and coefficient of performance.

A Sutdy on the Apllicability of the Energy Pile System on Substation (변전소 구조물의 에너지파일 시스템 적용성 연구)

  • Lee, Daesoo;Oh, Gidae;Lee, Kangyul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.198-198
    • /
    • 2011
  • Cooling and Heating system using Geothermal energy in the country has shown rapid development in the research and business field during about 10 years. However, like other renewable energy sources, high initial construction cost is acting as an obstacle to apply widely. Therefore Energy pile system(Heat Exchanger inserted inside the structure pile) that can save about 25 % initial construction cost has been studied in European countries and recently being studied in our country. Therefore, KPECO(Korea Electric Power Corporation) is also studying energy pile system to improve cooling & heating system in substation that install about 200 pile. KPECO is aimed to make energy pile design, construction and maintenance standards because substation has good applicability. In this study, we studied to make new grout material and design program to make optimized design & counstruction method of energy pile system. And planing to peform field test for energy pile system in a 154 kV substation to obtain long-term behavior and efficiency of the system.

  • PDF