• Title/Summary/Keyword: Heat Emission

Search Result 921, Processing Time 0.025 seconds

Preparation and Characterization of Organic Solvent-resistant Polybenzimidazole Membranes (용매저항성 폴리벤즈이미다졸 분리막의 제조 및 특성평가)

  • Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.420-426
    • /
    • 2017
  • Recently, solvent-resistant nanofiltration membranes have been studied for the separation of solvents or solutes using a molecular weight cut-off system of the polymer which is resistant to a specific solvent. Required conditions for these membranes must have are excellent physical properties and solvent resistance. Polybenzimidazole, which is known to be one of the most heat-resistant commercially available polymers, has an excellent inherent solvent resistance and it is even insoluble in stronger organic solvents when cross-linked. Therefore, in this study, the applicability of polybenzimidazole as a solvent resistant nanofiltration membrane was discussed. The membrane was fabricated using the non-solvent induced phase separation method and showed a suitable morphology as a nanofiltration membrane confirmed by field emission scanning electron microscopy. In addition, the permeance of the solvent in the presence or absence of cross-linking was investigated and the stability was also confirmed through long operation. The permeance test was carried out with five different solvents: water, ethanol, benzene, N, N-dimethylacetamide (DMAc) and n-methyl-2-pyrrolidone (NMP); each of the initial flux was $6500L/m^2h$ (water, 2 bar), $720L/m^2h$ (DMAc, 5 bar), $185L/m^2h$ (benzene, 5 bar), $132L/m^2h$ (NMP, 5 bar), $65L/m^2h$ (ethanol, 5 bar) and the pressure between 2 and 5 bar was applied depending on the type of membrane.

Discussion of Preliminary Design Review for MIRIS, the Main Payload of STSAT-3

  • Han, Won-Yong;Jin, Ho;Park, Jang-Hyun;Nam, Uk-Won;Yuk, In-Soo;Lee, Sung-Ho;Park, Young-Sik;Park, Sung-Jun;Lee, Dae-Hee;Ree, Chang-H.;Jeong, Woong-Seob;Moon, Bong-Kon;Cha, Sang-Mok;Cho, Seoung-Hyun;Rhee, Seung-Woo;Park, Jong-Oh;Lee, Seung-Heon;Lee, Hyung-Mok;Matsumoto, Toshio
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.1-27.1
    • /
    • 2008
  • KASI (Korea Astronomy and Space Science Institute) is developing a compact wide-field survey space telescope system, MIRIS (The Multi-purpose IR Imaging System) to be launched in 2010 as the main payload of the Korea Science and Technology Satellite 3. Through recent System Design Review (SDR) and Preliminary Design Review (PDR), most of the system design concept was reviewed and confirmed. The near IR imaging system adopted short F/2 optics for wide field low resolution observation at wavelength band 0.9~2.0 um minimizing the effect of attitude control system. The mechanical system is composed of a cover, baffle, optics, and detector system using a $256\times256$ Teledyne PICNIC FPA providing a $3.67\times3.67$ degree field of view with a pixel scale of 51.6 arcsec. We designed a support system to minimize heat transfer with Muti-Layer Insulation. The electronics of the MIRIS system is composed of 7 boards including DSP, control, SCIF. Particular attention is being paid to develop mission operation scenario for space observation to minimize IR background radiation from the Earth and Sun. The scientific purpose of MIRIS is to survey the Galactic plane in the emission line of Pa$\alpha$ ($1.88{\mu}m$) and to detect the cosmic infrared background (CIB) radiation. The CIB is being suspected to be originated from the first generation stars of the Universe and we will test this hypothesis by comparing the fluctuations in I (0.9~1.2 um) and H (1.2~2.0 um) bands to search the red shifted Lyman cutoff signature.

  • PDF

Effect of by New and Renewable Energy Utilization on $CO_2$ Reduction in Rural-type Green Village (농촌형 녹색마을 내 신재생에너지 활용에 따른 $CO_2$ 저감 효과)

  • Kim, J.G.;Ryou, Y.S.;Kang, Y.K.;Kim, Y.H.;Jang, J.K.;Kim, H.T.;Lee, S.K.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.44-52
    • /
    • 2012
  • As an alternative strategy in the era of high level petroleum cost, the study focused to suggest the way on the revitalization of renewable energy through the impact on introduction effect of renewable energy in green village. Total feasible solar energy production is 6.73 GWh/yr along with the biomass energy producing electric power energy is 134.06 GWh/yr, the two category's total electric power energy is 233.19 GWh/yr, which is possible to achieve the selfsufficiency of energy by 33% for total energy consumption of 705.80 GWh/yr in the region. The calculated feasibility on the carbon dioxide reduction, carbon dioxide reduction level is 1,891 ton_$CO_2$ by agricultural byproducts, 43,635 ton_$CO_2$ by livestock waste, 395 ton_$CO_2$ by municipal waste, 50,324 ton_$CO_2$ by forest byproducts, the total biomass shows 96,245 ton_$CO_2$, while the carbon dioxide reduction of solar light energy is 2,251 ton_$CO_2$, 1,383.3 ton_$CO_2$ by solar heat energy, the total solar energy shows 3,634 ton_$CO_2$. So total carbon dioxide reduction effect shows 99,879 ton_$CO_2$.

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.

Improvement of Calcium Phosphate Forming Ability of Titanium Implant by Thermal Oxidation Method (열산화법에 의한 티타늄 임플란트의 인산칼슘 결정의 형성 능력 증진)

  • Hwang, Kyu-Seog;An, Jun-Hyung;Lee, Seon-Ok;Yun, Yeon-Hum;Kang, Bo-An;Oh, Jeong-Sun;Kim, Sang-Bok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.460-466
    • /
    • 2002
  • Titanium oxide film was deposited on the commercially pure titanium (cp-Ti) by thermal oxidation method for its medical application. The cp-Ti disks were cleaned and then heat-treated at the temperatures of 500, 550, 600, 650, and 700${\circ}C$, respectively, for 10 min in air or Ar. To test the ability of calcium phosphate formation, the specimens were immersed in the Eagle's minimum essential medium solution at 36.5${\circ}C$ for 15 days. The morphology and chemical composition of the surfaces before and after soaking were analyzed by using FE-SEM and EDS. The in-vitro formation of carbonated calcium phosphate on the thin films containing nano-sized $TiO_2$ crystals was identified.

Hydrothermal Synthesis of Ultra-fine SrAl2O4:Eu Powders and Investigation of their Photoluminescent Characteristics (수열합성법에 의한 SrAl2O4:Eu 초미세 분말 합성공정 및 형광 특성)

  • 박우식;김선재;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.370-374
    • /
    • 2004
  • Sr$_{l-x}$Ba$_{x}$Al$_2$O$_4$:Eu (x = 0, 0.1, 0.2, and 0.3 mol) phosphor was synthesized by the hydrothermal method and its properties of photoluminescence and long-afterglow were investigated. The mixtures of Sr(NO$_3$)$_2$, Al(NO$_3$)$_3$9$H_2O$, and Eu(NO$_3$)$_3$$.$6$H_2O$ salts dissolved in distilled water, after controlling their pH by NH$_4$OH solution, put into an Autoclave reactor with high temperature and pressure to react. Such synthesized SrAl$_2$O$_4$:Eu powders showed homogeneous and ultra-fine particles of sub-micron size. In order to have the photoluminescence characteristic, powders were heat treated at 1100 -140$0^{\circ}C$ for 2 h in Ar/H$_2$ reduction atmosphere. Photoluminescence spectra showed a excitation along the wide wavelength of 250 ∼ 450 nm, and broaden emission with maxima peak at 520 nm. Also, it showed a good long afterglow with decaying over 1000 sec after excitation illumination for 10 min. In addition, the microstructure and crystal structure of SrAl$_2$O$_4$:Eu powders were investigated by an SEM and XRD, respectively.

A Study on Fire Spread and Evacuation Risk of Conduit Combustion in Ceiling Hiding Place (천장 은폐장소 전선관 연소에 따른 화재확산 및 피난 위험도에 관한 연구)

  • Park, Kwang-Muk;Jeon, Jae-Kam;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • In this study, the ISO 5660 and ISO 5659 combustion tests were conducted with synthetic resin conduits (CD, VE) and metal conduit (ST) used for wiring work in electrical facilities, which can be installed in ceiling concealed places. Then, fire spreading and evacuation risks were analyzed based on the measured data. In the ISO 5660 test, CD of 120.5 MJ/㎡, VE of 81.9 MJ/㎡, and ST of 4.9 MJ/㎡ were measured. In the ISO 5659 test, the CD 1320, VE 731, and ST 102 were measured, and then the maximum smoke densities were measured for CD 605 s, VE 740 s, and ST 1,200 s. In terms of fire spreading and evacuation risk, the CD conduit, VE conduit, and ST conduit were in order. In the fire spreading risk analysis, total heat emission was calculated as 4,820 MJ/㎡, 4,267 MJ/㎡, and 196 MJ/㎡ for CD, VE, and ST, respectively. Evacuation risk analysis shows at transmittance of 89%, CD is 127 s, VE is 35 s, and ST is 969 s. At transmittance of 79%, representing almost invisible concentration, CD is 157 s and VE is 50 s. The CD and VE conduits had a high fire spreading and evacuation risks, while the ST conduit had little effect on fire spreading and evacuation risk.

A Study on Mine Ventilation Network (광산 통기 네트워크 연구)

  • Kim, Soo Hong;Kim, Yun Kwang;Kim, Sun Myung;Jang, Yun Ho
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.217-229
    • /
    • 2017
  • This study focuses on the improvement of the working environment in domestic collieries where temperature is increasing due to heat of the earth that is caused by the long-term mining. In order to improve the working environment of the mine, a ventilation evaluation was carried out for Hwasoon Mining Industry. In order to increase the ventilation efficiency of the mine, numerical analysis of the effect on temperature was carried out by using climsim, a temperature prediction program. The analysis shows that A coal mine needs $6,152m^3/min$ for in-flow ventilation rate but the total input air flowrate is $4,710m^3/min$, $1,442m^3/min$ of in-flow ventilation rate shortage. The 93 m hypothetical ventilation shaft from -395 ML to -488 ML could result about $3^{\circ}C$ temperature drop in the coal mine of -488 ML far. As a result of predicting the $CO_2$ concentration at -523 ML development using artificial neural network, the emission of $CO_2$ increased as the amount of coal and coal bed thickness increased. The factors that have the greatest effect on the amount of $CO_2$ emissions were coal layer thickness and coal mining. And, as the air quantity increases, it has a great effect on the decrease of carbon dioxide concentration.

Thermoeconomic Analysis of Hybrid Desiccant Cooling System Driven by District Heating (지역난방에 연계된 하이브리드 제습냉방시스템의 경제성 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.721-729
    • /
    • 2014
  • A hybrid desiccant cooling system (HDCS) that uses a heat pump driven by district heating instead of a sensible rotor can provide an increased energy efficiency in summer. In this paper, the summer operation costs and initial costs of both the HDCS and traditional systems are analyzed using annual equal payments, and national benefits are found from using the HDCS instead of traditional systems. In the analysis results, the HDCS reduces the operation cost by 30 compared to the traditional systems, and each HDCS unit has 0.079 TOE per year of primary energy savings and 0.835 $TCO_2$ per year of $CO_2$ emission reduction more than the traditional systems. If HDCSs were to be installed in 680,000 households by 2020, this would produce a replacement power effect of 463 MW. Despite this savings effect, HDCSs require a government subsidy before they can be supplied because the initial cost is higher than that of traditional systems. Thus, this paper calculates suitable subsidies and suggests a supply method for HDCSs considering the national benefits.

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.