• Title/Summary/Keyword: Heat Emission

Search Result 920, Processing Time 0.027 seconds

Development of Leak Detection System of Heat Exchanger using Acoustic Emission Technique (음향방출기법을 이용한 열교환기 누설 검출 시스템 개발)

  • Lee, Min-Rae;Lee, Joon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.65-71
    • /
    • 2001
  • In this paper, acoustic omission technique(AE) has been applied to detect leak for heat exchanger by analyzing the characteristics of signal obtained from leak. It was confirmed that the characteristics of the signal generated by the turbulence of gas in the heat exchanger is narrow band signal having between 130-250KHz. Generally, the amplitude of leak signal is increased as the leak size increasing, but showed no significant change at frequency characteristic. Leak source location can be found by searching for the point of highest signal amplitude by comparing wi th several fired sensors.

  • PDF

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part I: Characteristics of Combustion (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part I: 연소특성)

  • Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • The characteristics of flame shape, laminar burning velocity, emissions and heat flux of stagnation point in premixed impinging jet flame of syngas fuel with 10% hydrogen content were experimentally investigated. Also, the adiabatic temperature and burning velocity are calculated by Chemkin package with USC-II mechanism. The equivalence ratios(0.8~5.0) and dimensionless separation distance(2.0~5.0) with fixed Reynolds number(1800) are main parameters in this work. Different flame shapes and colors were observed for different impingement conditions. The experimental results of burning velocity by flame surface area have a consistent with previous works and numerical simulation of this work. The inner flame length could be predicted with the ratio of mixture velocity and burning velocity from a simple formulation by the laminar burning velocity definition. It has been observed that the heat fluxes at stagnation point are directly affected by the flame shape including the separation distance. The emission results in impinging flame of syngas fuel show that the characteristics of $NO_x$ emission traced well with adiabatic temperature trend and CO emission due to fuel rich condition increased continuously with respect to the equivalence ratio.

Effects of District Energy Supply by Combined Heat and Power Plant on Greenhouse Gas Emission Mitigation (열병합발전을 이용한 집단에너지사업의 온실가스 감축효과)

  • Shin, Kyoung-A;Dong, Jong-In;Kang, Jae-Sung;Im, Yong-Hoon;Kim, Da-Hye
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.213-220
    • /
    • 2017
  • The purpose of this study is to analyze effects of Greenhouse Gas (GHG) emission reduction in district energy business mainly based on Combined Heat and Power (CHP) plants. Firstly this paper compares the actual carbon intensity of power production between conventional power plants and district energy plants. To allocate the GHG from CHP plants, two of different methods which were Alternative Generation Method and Power Bonus Method, have been investigated. The carbon intensity of power production in district energy plants ($0.43tonCO_2e/MWh$) was relatively lower than conventional gas-fired power plants ($0.52tonCO_2e/MWh$). Secondly we assessed the cost effectiveness of reduction by district energy sector compared to the other means using TIMES model method. We find that GHG marginal abatement cost of 'expand CHP' scenario (-$134/ton$CO_2$) is even below than renewable energy scenario such as photovoltaic power generation ($87/ton$CO_2$). Finally the GHG emission reduction potential was reviewed on the projected GHG emission emitted when the same amount of energy produced in combination of conventional power plants and individual boilers as substitution of district energy. It showed there were 10.1~41.8% of GHG emission reduction potential in district energy compared to the combination of conventional power plants and individual boilers.

The Evaluation of Mixed Welded SM 490A Steel by Acoustic Emission (2) (음향방출법에 의한 SM 490A 강의 복합용접성 평가 (2))

  • 이장규;우창기;김봉각;윤종희;인승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.363-370
    • /
    • 2003
  • The object of this study is to investigate the effect of compounded welding by using an acoustic emission (AE) signals and doing a source location for weld heat affected zone (HAZ) through tensile testing. This study was carried out a SM 490A high tension steel for electronic shielded metal arc welding (SMAW), $CO_2$ gas arc welding and TIG welding. Data displays are based on the measured parameters of the AE signals, along with environmental variables such as time and load. These history plots are displays showing the chronological course of the test. Also, source location gives the X- and Y-coordinates of the AE source.

  • PDF

Study on Dissimilar Friction Welding Optimization of Heat Resisting Steels for Turbine and Real-Time Quality Evaluation by Ascoustic Emission(I) - FRW Optimization (터빈용 내열강의 이종재 마찰용접 최적화와 AE에 의한 품질 실시간 평가에 관한 연구(I) - 마찰용접 최적화)

  • Park, Hyung-Dong;Oh , Sae Kyoo;Kwon, Sang-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.83-91
    • /
    • 1999
  • Taking a view of joining by welding the IN713C to SCM440 and SCM415 steel in production of turbochargers, the frictin welding process may be utilized as a new approach for joining them of other conventional welding processes. It is because the friction welding has more technical and technical and economic advantages than the other welding processes. As this welding process has the characteristics such as curtaliment of production time and materials and cost reduction, etc.. So, this paper deals with determining the preper friction welding condition and analyzing various mechanical properties of friction welded joints of the super heat resisting steel to alloy stee(IN713C to SCM440 and SCM415). And the in-process real-time weld quality evaluation technique by acoustic emission during friction welding of IN713C to SCM440 and SCM415 steels with higher confidence and relibility has been much required even though it might be the first trial approach for developing it. Then, this first study aimed to develop the optimization of dissimilar friction welding of heat resisting steels (INC713 to SCM440, SCM415) for turbine, considering on strength and toughness.

  • PDF

A Study on the Acoustic Emission Characteristics of Weld Heat Affected Zone in SWS 490A Steel(2) (SWS 490A 강의 용접 열영향부 음향방출 특성에 대한 연구(2))

  • Rhee, Zhang-Kyu;Woo, Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.104-113
    • /
    • 2006
  • The main objective of this study is to investigate the effect of compounded welding by using acoustic emission (AE) signals and doing a source location for weld heat affected zone (HAZ) through tensile testing. This study was carried out an SWS 490A high strength steel for electric shield metal arc welding, SMAW; $CO_2$ gas metal arc welding, GMAW($CO_2$); and gas tungsten arc welding, GTAW/TIG. Data displays are based on the measured parameters of the AE signals, along with environmental variables such as time and load. For instance, Gutenberg-Richter magnitude-frequency relationship (G-R MFR) offers useful b-value in data analysis. Namely event identification, source location gives the X- and Y-coordinates of the AE source. And K-means clustering analysis by Euclidean distance confirmed that was powerful to source location. Generally, strength of welded metal zone was stronger than strength of base metal. As the result, confirmed certainly that fracture is produced in HAZ instead of welded metal zone from source location.

Effects of Surface Treatment on Field Emission Properties for Carbon Nanotube Cathodes (탄소나노튜브 캐소드에서 표면처리 방법이 전계방출 특성에 미치는 영향)

  • Seong, Myeong-Seok;Oh, Jeong-Seob;Lee, Ji-Eon;Jung, Seung-Jin;Kim, Tae-Sik;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Carbon nanotube cathodes (CNT cathodes) were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatment on CNT cathodes were investigated for use in high efficiency field emission displays. The optimum surface treatment for a CNT cathode is dependent on a relative bonding force of CNT films on the cathode after a heat treatment. Because of the high bonding force used in the Liquid method, this method is recommended for CNT cathodes which are heat-treated at $390^{\circ}C$ in a $N_2$ atmosphere. The Rolling method is applicable for CNT cathodes fabricated at $350^{\circ}C$ in an atmosphere of air. The results of this study provide basic criteria for the selection of an appropriate surface treatment for large area CNT cathodes.

A Study on Dependence of Smoke Emission in Diesel Engines Upon Diffusion Combustion (디젤기관의 스모크배출의 확산연소 의존성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.397-404
    • /
    • 1994
  • Smoke is emitted in diesel engines because fuel injected into the high-temperatured and high-pressured combustion chamber burns with its mixture with insufficient oxygeny. In consideration of air pollution, above all, it is necessary to illuminate the cause of smoke emission in diesel engines. The smoke emission, which is characteristic of diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore the smoke emission is dependent on diffusion combustion quantity, which is in turn controlled by engine parameter. The study aims at making clear and interpreting the interdependence of smoke emission in diesel engines with heat released within combustion chamber, camparing diffusion combustion quantity according to each engine parameter (air fuel ratio, injection timing, and engine speed), and showing the relation between smoke emission and fraction of diffusion combustion through experiment.

Heat Transfer Characteristics with Changing Distances between Burner and Heat Exchanger (버너와 열교환기 간격 변화에 대한 열전달 특성)

  • Kim, Jong-Min;Lee, Jae-Park;Yu, Byeong-Hun;Kum, Sung-Min;Lee, Chang-Eon;Lee, Seung-Ro
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.933-938
    • /
    • 2011
  • In this study, the heat transfer characteristics and NOx and CO emissions of a heat exchanger were investigated using a premixed burner. The experiments involved changing the distance between the burner and heat exchanger to 30, 40, and 50 mm with various equivalence ratios. The results showed that the NOx and CO emissions increased as the equivalence ratio was increased because the flame temperature increased, regardless of the distance between the burner and heat exchanger. In particular, the CO emission increased significantly as the distance between the burner and heat exchanger was decreased. The optimal equivalence ratio for the A-type heat exchanger (distance between the burner and heat exchanger: 30 cm) was 0.7 in the experimental range. In this case, the CO and NOx emissions were 94.5 ppm and 11.2 ppm, respectively, and the efficiency was 84.1%.