• Title/Summary/Keyword: Heat Dissipation

Search Result 516, Processing Time 0.032 seconds

A Study on Selecting Criteria of Working Fluid in Loop Heat Pipes with a Circular Plate Type Evaporator

  • Nguyen, Xuanhung;Sung, Byung-Ho;Choi, Jee-Hoon;Jo, Jung-Rae;Yim, Kwang-Bin;Kim, Chul-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.309-314
    • /
    • 2008
  • increased heat dissipation and higher heat density of electronic equipment and/or parts released. A loop heat pipe(LHP) has been payed closer attention to the potential candidate of an electronic cooling. As of the LHP with a circular plate type evaporator developed, this study focused on its operating characteristics on the steady state in accordance with charging different working fluid. The relationship between working fluid and operating characteristics is discussed.

  • PDF

Multi-objective Topology Optimization of Magneto-Thermal Problem considering Heat Flow Rate (열 유입률을 고려한 자계-열계 다목적 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Moon, Hee-Gon;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.138-139
    • /
    • 2007
  • This research provides machine designers with some intuition to consider both, magnetic and heat transfer effects. A topological multi-objective function includes magnetic energy and heat inflow rate to the system, which equals to the total heat dissipation by conduction and convection. For the thermal field regarding the heat inflow, introduced as a reaction force, topology design sensitivity is derived by employing discrete equations. The adjoint variable method is used to avoid numerous sensitivity evaluations. As a numerical example, a C-core design excited by winding current demonstrates the strength of the multi-physical approach.

  • PDF

Flow Condensation Inside Mini-Channels (I) -Development of New Experimental Technique- (작은 유로 내에서의 흐름응축 열전달 (I) -새로운 실험기법의 개발 -)

  • Shin, Jeong-Seob;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1424-1431
    • /
    • 2004
  • With traditional experimental methods such as the secondary fluid (e.g., water) calorimetric method, it is very difficult to accurately test the local condensation heat transfer inside mini-channels. Hence, there are large discrepancies between the results of previous studies. The experimental methods as well as unidentified sources of uncertainties could be reasons for such discrepancies. In this study, innovative experimental techniques were developed to measure the in-tube condensation heat transfer coefficient. With these techniques, very low heat dissipation rates such as several watts from the mini-channel could be estimated and low mass flow rates below the 0.1 ㎏/h could be measured with reasonable uncertainties. To the authors' knowledge, these techniques provide a unique experimental apparatus for measuring the condensation heat transfer coefficients inside the sub-millimeter hydraulic diameter single channels.

Analysis on the Cooling Characteristics of a Channel with Pin-Fin Structure (핀-휜 구조물을 이용한 채널의 냉각특성 해석)

  • 신지영;손영석;이대영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.667-673
    • /
    • 2003
  • Recent trends in the electronic equipment indicate that the power consumption and heat generation in a chip increase as the components are miniaturized and the computing speed becomes faster. Suitable heat dissipation is required to ensure the guaranteed performance and reliable operation of the electronic devices. The aim of the present study is to investigate the forced-convective thermal-hydraulic characteristics of a pin-fin heat exchanger as a candidate for cooling system of the electronic devices. The influence of the structure of the pin-fin assembly on heat transfer is investigated by porous medium model. The results are compared with the experimental data or correlations of several researchers for the heat transfer coefficients for the channel flow with pin-fin arrays. Finally, the effects of design parameters such as the pin-fin diameter and the spacing are examined.

An Experiment on Heat Dissipation from Aluminum foam Heat Sinks in an Air Multi-Jet Impingement (다중 충돌 공기제트에서 발포 알루미늄 방열기의 방열 특성 실험)

  • Lee, Myeong-Ho;Kim, Seo-Yeong;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1115-1122
    • /
    • 2002
  • The present experiment investigates the effects of pore density f of aluminum foam heat sinks, the jet-to-jet spacing X and the nozzle plate-to-target surface spacing H of 3$\times$3 square impinging arrays on the averaged Nusselt number. The performance of the aluminum foam heat sinks and the rectangular plate heat sink is evaluated in terms of the enhancement factor. /equation omitted/. The multiple impinging jet with X/d=4.0 displays higher Nusselt numbers than single impinging jet for 12.0$\leq$H/d$\leq$20.0. With the variation of the jet-to-jet spacing, the aluminum foam heat sink of 10 PPI show higher Nusselt numbers than the 20 and 40 PPI aluminum foam heat sinks. Further, the 10 PPI aluminum foam heat sink demonstrates 26% higher enhancement factor than the rectangular plate heat sink in the range of 7000$\leq$Re$\leq$11000.

Optimization of Al 6063 Heat Sink using CFD Simulation and Comparative Analysis of Thermal Dissipation Properties with Thermal Conductive Polycarbonate (CFD전산모사를 이용한 Al 6063 Heat Sink 최적화 설계와 열전도성 Polycarbonate와의 방열성능 비교 분석)

  • Her, In-Sung;Lee, Se-Il;Lee, A-Ram;Yu, Young Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.7
    • /
    • pp.19-25
    • /
    • 2014
  • In the LED lighting applications, because LED packages are the origin of heat generation, there are thermal design problem on heat sinks. In the thermal design, it is important to consider the total volume and the total weight of heat sink simultaneously. In this study, an Al 6063 heat sink was optimized using Computational Fluid Dynamics(CFD) simulation tool for the cooling of 30W LED module, and then the cooling performance and the total weight of heat sinks with Al 6063 and Thermal Conductive Polycarbonate(TCP) were compared under the same conditions. As the result of simulation, an Al 6063 heat sink was optimized with 22 ea. of fins and 1.6 mm of fin thickness. LED Junction Temperature of the TCP Heat Sink was $5.6^{\circ}C$ higher, but total weight of it was 47 % less than the Al 6063.

Characterization of a Thermal Interface Material with Heat Spreader (전자부품의 방열방향에 따른 접촉열전도 특성)

  • Kim, Jung-Kyun;Nakayama, Wataru;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2010
  • The increasing of power and processing speed and miniaturization of central processor unit (CPU) used in electronics equipment requires better performing thermal management systems. A typical thermal management package consists of thermal interfaces, heat dissipaters, and external cooling systems. There have been a number of experimental techniques and procedures for estimating thermal conductivity of thin, compressible thermal interface material (TIM). The TIM performance is affected by many factors and thus TIM should be evaluated under specified application conditions. In compact packaging of electronic equipment the chip is interfaced with a thin heat spreader. As the package is made thinner, the coupling between heat flow through TIM and that in the heat spreader becomes stronger. Thus, a TIM characterization system for considering the heat spreader effect is proposed and demonstrated in detail in this paper. The TIM test apparatus developed based on ASTM D-5470 standard for thermal interface resistance measurement of high performance TIM, including the precise measurement of changes in in-situ materials thickness. Thermal impedances are measured and compared for different directions of heat dissipation. The measurement of the TIM under the practical conditions can thus be used as the thermal criteria for the TIM selection.

Study on Analysis of Heat Dissipation due to Shape of Motorcycle Disc Brake (모터사이클 디스크 브레이크 형상에 따른 방열해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.100-107
    • /
    • 2013
  • This study aims to improve the heat performance of motor cycle disk due to the number of holes by analyzing 6 kinds of disk models. This disk performance depends on the efficiency at emitting the heat. To raise the efficiency of heat emission, holes with circle or another configuration are made on disks to emit heat fast. The distribution of temperature, heat flux, deformation and stress are analyzed. As the number of holes on disk increases, the performance of heat emission is improved. Equivalent stress is decreased and durability is improved as the number of holes on disk increases. Though the number of holes on disk is increased, the performances of heat emission and durability do not become better. The optimal model can be found by comparing models each other through this analysis result. Through this study result, the configuration of motor cycle disk is designed with optimal heat emission and durability by comparing models.