• Title/Summary/Keyword: Heat Diffusion

Search Result 916, Processing Time 0.027 seconds

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Oscillatory Instability of Low Strain Rate Edge Flame (저신장율 에지 화염의 진동 불안정성)

  • Kim Kang-Tae;Park June-Sung;Kim Jeong-Soo;Oh Chang-Bo;Keel Sang-In;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.343-349
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral flame size was less than burner nozzle diameter and thus lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The oscillation is the direct outcome from the advancing and retreating edge flame. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which can be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

A Study on the Smoke Movement by the Opening and Heat Generator Position (개구부와 열원의 위치에 따른 연기이동에 관한 연구)

  • 조성우;이재윤
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.7-14
    • /
    • 2002
  • The diffusion characteristics of the smoke by effect of an ascending air movement in a local part of the room where heat generated was studied. How the smoke move in the limited parts of the room at which heat generated was studied through 3 cases altering locations of inlet and outlet of ventilated air and heat generated by CFD(Computational Fluids Dynamics) method. It was found that 1. Similar distribution of air velocity, air temperature and smoke concentration appeared in the case of upper left inlet and lower right outlet and the case of lower inlet and upper right outlet. 2. Distribution of temperature and smoke concentration was 0∼0.3, 0.06∼0.14 in the case of lower left inlet and upper right outlet. 3. the location of heat generation did not influence on the temperature distribution, but influence on the distribution of smoke concentration.

Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries

  • Charkravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.47-62
    • /
    • 2005
  • The present study deals with a mathematical model describing the dynamic response of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition. The geometry of the bifurcated arterial segment possessing constrictions in both the parent and the daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is formulated mathematically with the introduction of the suitable curvatures at the lateral junction and the flow divider. The blood flowing through the artery is treated to be Newtonian. The nonlinear unsteady flow phenomena is governed by the Navier-Stokes equations while those of heat and mass transfer are controlled by the heat conduction and the convection-diffusion equations respectively. All these equations together with the appropriate boundary conditions describing the present biomechanical problem following the radial coordinate transformation are solved numerically by adopting finite difference technique. The respective profiles of the flow field, the temperature and the concentration and their distributions as well are obtained. The influences of the stenosis, the arterial wall motion and the unsteady behaviour of the system in terms of the heat and mass transfer on the blood stream in the entire arterial segment are high­lighted through several plots presented at the end of the paper in order to illustrate the applicability of the present model under study.

The Effect of Sursulf Treating Time and Traveling Speed during Induction Hardening on Hardness and Wear Characteristics of Low Carbon Steel Combined-Heat-Treated (Sursulf 처리후 고주파 표면경화된 저탄소강의 경도 및 마모특성에 미치는 Sursulf 처리시간 및 고주파 경화 이송속도의 영향)

  • No, Y.S.;Kim, Y.H.;Lee, P.H.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 1989
  • This study has been performed to investigate into some effects of the Sursulf treatment time and the traveling speed of surface hardening treatment on the hardness and the wear characteristics by applying the combined heat treating techniques of Sursulf process followed by induction hardening treatment to mild steel. It has been shown that increasing the Sursulf treatment time increases the case depth, but both hardness and wear resistance are not considerably improved. When the combined heat treating technique of high frequency induction heating after Sursulf treatment is applied, an improvement in case depth as well as wear resistance is obtained. In particular, the hardness in diffusion zone is greatly increased due mainly to the formation of martensite and possibly lower bainite. Iron oxides formed during induction heating and subsequent water spray cooling in the outermost part of compound layer may be considered to cause some increases in hardness and wear resistance.

  • PDF

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Analysis of the Carburizing Heat Treatment Process for SNCM Alloy Steel Using the Finite Element Method (유한요소법을 이용한 SNCM 합금강의 침탄열처리 공정 해석)

  • Choi S.C.;Lee D.J.;Kim H.Y.;Kim H.J.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1284-1292
    • /
    • 2006
  • Heat treatment is a controlled heating and cooling process to improve the physical and/or mechanical properties of metal products without changing their shapes. Today finite element method is widely used to simulate lots of manufacturing processes including heat treatment and surface hardening processes, which aims to reduce the number of time- and cost-consuming experimental tryouts. In this study we tried, using this method, to simulate the full carburizing process that consists of carburizing, diffusing and quenching, and to predict the distribution of carbon contents, phase fraction and hardness, thermal deformation and other mechanical characteristics as the results. In the finite element analysis deformation, heat transfer, phase transformation and diffusion effects are taken into consideration. The carburizing process of a lock gear, a part of the car seat recliner, that is manufactured by the fine blanking process is adopted as the analysis model. The numerical results are discussed and partly compared with experimental data. And a combination of process parameters that is expected to give the highest surface hardness is proposed on the basis of this discussion.

Mass Transfer and Heat Transfer Characteristics of PEM fuel cell by Permeability of GDL (GDL Permeability에 따른 고분자 전해질 연료전지의 물질전달 및 열전달 특성에 관한 연구)

  • Han, Sang-Seok;Lee, Pil-Hyong;Park, Chang-Soo;Lee, Jae-Young;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2822-2827
    • /
    • 2008
  • Among the main components of PEM fuel cell, the functions of GDL are to transport reactants from the channel to the catalyst and remove reaction products from the catalyst and transport heat from the catalyst to the channels in the flow filed plate. Permeability of GDL is known to make it possible to enhance the gas transport through GDL, devoting to get better performance. In this paper, three dimensional numerical simulation of the fuel cell by the permeability of GDL is presented by using a FLUENT modified to include the electrochemical behavior. Results show that as permeability is higher than $10^{-12}m^2$, gradients of temperature distribution, oxygen molar concentration and current density distribution in MEA were decreased. Although heat generation was increased as high permeability, MEA's temperature was lower than the low permeability of GDL. This seems because that convection was higher affects in mass and heat transfer process than diffusion as permeability of GDL is increases.

  • PDF

A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

  • Han, Seunghak;Nam, Seokho;Lee, Jeyull;Song, Seunghyun;Jeon, Haeryong;Baek, Geonwoo;Kang, Hyoungku;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.44-48
    • /
    • 2017
  • Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

Effect of Process Temperature on the Sm2Fe17 Alloying Process During a Reduction-Diffusion Process Using Fe Nanopowder (Fe 나노분말을 사용한 환원-확산공정에서 Sm2Fe17 합금상형성에 미치는 공정온도의 영향)

  • Yun, Joon-Chul;Lee, Geon-Yong;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.995-1002
    • /
    • 2010
  • This study investigated the effect of process temperature on the alloying process during synthesis of $Sm_2Fe_{17}$ powder from ball-milled samarium oxide ($Sm_2O_3$) powders and a solid reducing agent of calcium hydrides ($CaH_2$) using iron nanopowder (n-Fe powder) by a reduction-diffusion (R-D) process. The $n-Fe-Sm_2O_3-CaH_2$ mixed powders were subjected to heat treatment at $850{\sim}1100^{\circ}C$ in $Ar-H_2$ for 5 h. It was found that the iron nanopowders in the mixed powders are sintered below $850^{\circ}C$ during the R-D process and the $SmH_2$ is synthesized by a reduced Sm that combines with $H_2$ around $850^{\circ}C$. The results showed that $SmH_2$ is able to separate Sm and $H_2$ respectively depending on an increase in process temperature, and the formed $Sm_2Fe_{17}$ phase on the surface of the sintered Fe nanopowder agglomerated at temperatures of $950{\sim}1100^{\circ}C$ in this study. The formation of the $Sm_2Fe_{17}$ layer is mainly due to the diffusion reaction of Sm atoms into the sintered Fe nanopowder, which agglomerates above $950^{\circ}C$. We concluded that nanoscale $Sm_2Fe_{17}$ powder can be synthesized by controlling the diffusion depth using well-dispersed Fe nanopowders.