• 제목/요약/키워드: Heat Deformation

검색결과 964건 처리시간 0.024초

Interpretation of Firing Temperature and Thermal Deformation of Roof Tiles from Ancient Tombs of Seokchon-dong in Seoul, Korea (서울 석촌동 고분군 출토 기와의 소성온도와 열변형 특성 해석)

  • Jin, Hong Ju;Jang, Sungyoon;Lee, Myeong Seong
    • Economic and Environmental Geology
    • /
    • 제54권6호
    • /
    • pp.671-687
    • /
    • 2021
  • This study investigated the firing temperature and thermal deformation process of roof tiles excavated from the connected stone-mound tomb in Seokchon-dong, Seoul, based on mineralogical and physical properties. A large number of roof tiles were excavated from the tomb site and some roof tiles were deformed by heat and were fired in uneven conditions. The colors of original roof tiles and their cores are mostly yellowish-brown, with high water absorption over 12%, containing fine-grained textures and some minerals such as quartz, feldspars, amphibole, and mica. It is estimated that the original roof tiles were fired below 900℃ in oxidation condition, showing loose matrices and mica layers by scanning electron microscopy. However, deformed roof tiles have the uneven surface color of reddish-brown and bluish-gray, and those cross-sections have sandwich structures in which dense reddish-brown surface and porous grey core coexist. They contained mullite and hercynite, so it was estimated to have been fired over 1,000℃, with 0.81~11% water absorption. In some samples, bloating pores by overfiring were observed, which means that they were fired at more than 1,200℃. In addition, the refirng experiments that the original roof tile was fired between 800℃ and 1,200℃ were carried out to investigate the physical and mineralogical properties of roof tiles compared to deformed ones. As a result, the water absorption decreased rapidly and the mineral phase started to change over 1,000℃. As the temperature gradually rises, the matrices are partially melted and recrystallized, resulting in similar thermal characteristics of deformed roof tiles. Therefore, the roof tiles from ancient tombs in Seokchon-dong seem to experience the secondary high temperature of 1,000 to 1,200℃ under uneven firing conditions, resulting in deformation characteristics such as shape transformation and mineral phase transition. It is considered to have been related to cremation rituals at the tombs of Seockchon-dong during the Baekje period.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제16권3호
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

Mechanical Properties and Electrical Conductivities of In-Situ Cu-9Fe-1.2X(X=Ag, Cr, Co) Microcomposite Wires (Cu-9Fe-1.2X (X=Ag, Cr, Co)계 미세복합재료전선의 기계적 특성 및 전기전도도)

  • Song, Jae-Suk;Im, Mun-Su;An, Jang-Ho;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • 제10권1호
    • /
    • pp.41-48
    • /
    • 2000
  • In this study, microstructure and mechanical properties and electrical conductivities of in situ Cu-Fe-Xi(Xi=Ag, Cr or Co) alloy wires obtained by cold drawing combined with intermediate heat treatments have investigated. During cold working the primary and secondary dendrite arms are aligned along the drawing direction and elongated into filaments after deformation processing. The addition of Ag was found to be more effective in reducing the microstructural scale at the given draw ratio than that of Co or Cr throughout the drawing processing. The ultimate tensile strength and the conductivity of the Cu-Fe based composites containing Ag were higher than those of Cu-Fe composites containing Co or Cr. The good mechanical and electrical properties of Cu-Fe-Ag wires may be associated with the more uniform distribution of the finer filaments in the wires containing silver. The strength of Cu-Fe-Xi composites is dependent on the spacing of the Fe filaments in accord with a Hall-Petch relationship. The fracture surfaces of all the specimens showed ductile-type fracture and iron filaments occasionally observed on the fracture surfaces.

  • PDF

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Study on the Analysis of Damage Patterns of Cellular Phone Batteries According to Energy Sources (에너지원에 따른 이동전화기 배터리의 소손패턴 해석에 관한 연구)

  • Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • 제25권6호
    • /
    • pp.21-26
    • /
    • 2011
  • The purpose of this paper is to present the damage patterns of cellular phone (SCH_W830) batteries according to energy sources and have them utilized as data for the settlement of disputes between manufactures and consumers. The reliability was secured by maintaining the ambient temperature and humidity at $22{\pm}2^{\circ}C$ and 40~60 %, respectively. The voltage of the battery used for the tests was measured to be 4.18V between positive pole (+) and negative pole (-)(1), and 4.19 V between positive pole (+) and negative pole (-)(2). This study applied the Korean Industrial Standard (KS) to the flammability test of cellular phones due to a general flame applied to them and found that no damage occurred to the built-in battery even though the flame was applied to the cases of cellular phones for 30 seconds. From the results of immersing the cellular phones in the saline solution (NaCl, 0.9 %) for 180 seconds, it was found that there was a trace of carbonization and melting due to the heat caused by leaking current. It can be seen that when the cellular phones were heated for 70 seconds using a microwave oven (MWO), the areas containing the metal holder, recharging connector, antenna, etc., were melted and discolored and that other areas showed no particular problems. That is, while the external carbonization of cellular phones, built-in metals and dielectric materials, and damage and deformation of the battery terminal block, etc., occurred differently depending on the types of energy sources, the voltage showed comparatively constant characteristics. Therefore, it is thought to be possible to attribute the cause of damage to the battery by performing analysis taking into consideration comprehensively the characteristics of the flame spread pattern as well as the melting and deformation of metals.

A Study on the Physcial and Mechanical Properties of Hot - Compressed Wood (열압처리(熱壓處理) 목재(木材)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究))

  • Park, Young-Kyu;Chung, Dae-Kyo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제15권4호
    • /
    • pp.45-58
    • /
    • 1987
  • This study was carried out to improve the physical and mechanical properties of Pupulus alba $\times$ glandulosa treated by the heat and compression. The results obtained were as follows. 1. The specific gravity of the wood was conspicuously increased by the lincreasing of pressing level. 2. The shrinkage of the wood was increased. by the increasing of pressing level. The radial shrinkage was 6.41-8.81%, the tangential shrinkage was 8.98-19.81 %, and the longitudinal shrinkage was 1.46-1.91 %. Comparing to the untreated stock, the rate of increase was 48.7-104.4% in radial direction. 1.7-124.4% in tangential direction and 60.4-109.9% in longitudinal direction, respectively. 3. The rate absorption of 30% compressed stock was Similar to that of untreated stock. but the rate of absorption of 40 % or more compressed stock was increased highly. 4. The thickness swelling of the wood was not changed in radial direction at pressing level, but was conspicuously increased in tangential direction under the pressing level of 40% and 50%. 5. The heat and compression treatment affected on the mechanical properties of the wood. The longitudinal compressive strength was increased under the pressing level of up to 40%, but was decreased under the pressing level of 50%. The bending strength was not changed under the compression percentage of up to 30%, but was decreased under the pressing level of 30% or more. And, the absorbed energy in impact bending was increased to 128% under the pressing level of up to 30%, but was decreased under the pressing level of 30% or more. Conclusionly, the mechanical properties of the wood was improved by the heat and compression treatment, but the strength of the wood was decreased under the pressing level of a certain level or more(in this study, pressing level of 30% or more). This was because of the wood deterioration due to the deformation(shrinkage, crack, failure) of wood tissues induced by the heat and compression treatment, the heat analysis of wood components induced by the heating, and the drop of the degree of polymerization.

  • PDF

The Experimental Study on Hydration Properties of Quaternary Component Blended High Fluidity Concrete with CO2 Reduction (탄소저감형 4성분계 고유동 콘크리트의 수화 특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Jo, Jun-Hee;Kang, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제5권4호
    • /
    • pp.403-413
    • /
    • 2017
  • In this paper, to increase the use of industrial byproducts for $CO_2$ reduction and to improve construction performance, it was manufactured that $CO_2$ reduction type quaternary component high fluidity concrete (QC-HFC) with Reduced cement usage by more than 80% and its quality and hydration characteristics were evaluated. QC-HFC was found to satisfy the target performance, and the flow and mechanical properties were similar to those of conventional concrete. The drying shrinkage of QC-HFC decreased about twice compared with the conventional blend, and the hydration heat decreased about 36%. As a result, it can be concluded that the amount of cracks can be reduced by reducing temperature stress due to hydration heat reduction effect and reducing deformation due to relatively small temperature difference between inside and outside. Also, As a result of the simulation of the mass structure, the temperature cracking index of QC-HFC is 1.1 or more, and the cracking probability is reduced by about 35%, so that the crack due to temperature can be reduced.

A Study on the Application of SAW Process for Thin Plate of 3.2 Thickness in Ship Structure (선체외판부 3.2T 박판에 대한 SAW 용접 적용에 관한 연구)

  • Oh, Chong-In;Yun, Jin-Oh;Lim, Dong-Young;Jeong, Sang-Hoon;Lee, Jeong-Soo
    • Proceedings of the KWS Conference
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.51-51
    • /
    • 2010
  • Recently just as in the automobile industry, shipbuilders also try to reduce material consumption and weight in order to keep operating costs as low as possible and improve the speed of production. Naturally industry is ever searching for welding techniques offering higher power, higher productivity and a better quality. Therefore it is important to have a details research based on the various welding process applied to steel and other materials, and to have the ability both to counsel interested companies and to evaluate the feasibility of implementation of this process. Submerged-arc welding (SAW) process is usually used about 20% of shipbuilding. Similar to gas metal arc welding(GMAW), SAW involves formation of an arc between a continuously-fed bare wire electrode and the work-piece. The process uses a flux to generate protective gases and slag, and to add alloying elements to the weld pool and a shielding gas is not required. Prior to welding, a thin layer of flux powder is placed on the work-piece surface. The arc moves along the joint line and as it does so, excess flux is recycled via a hopper. Remaining fused slag layers can be easily removed after welding. As the arc is completely covered by the flux layer, heat loss is extremely low. This produces a thermal efficiency as high as 60% (compared with 25% for manual metal arc). SAW process offers many advantages compared to conventional CO2 welding process. The main advantages of SAW are higher welding speed, facility of workers, less deformation and better than bead shape & strength of welded joint because there is no visible arc light, welding is spatter-free, fully-mechanized or automatic process, high travel speed, and depth of penetration and chemical composition of the deposited weld metal. However it is difficult to application of thin plate according to high heat input. So this paper has been focused on application of the field according to SAW process for thin plate in ship-structures. For this purpose, It has been decided to optimized welding condition by experiments, relationship between welding parameters and bead shapes, mechanical test such as tensile and bending. Also finite element(FE) based numerical comparison of thermal history and welding residual stress in A-grade 3.2 thickness steel of SAW been made in this study. From the result of this study, It makes substantial saving of time and manufacturing cost and raises the quality of product.

  • PDF

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제19권2호
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

Rheological Properties of Heat-Induced Gels of Surimi from Acid and Alkali Process (산 및 알칼리 공정으로 조제한 수리미 가열 겔의 물성 특성)

  • Choi Young Joon;Park Joo Dong;Kim Jin Soo;Cho Young Jae;Park Jae W.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제35권4호
    • /
    • pp.309-314
    • /
    • 2002
  • Rhtological properties of surimi gel from white fishes by acid (acid surimi) and alkali (alkali surmi) process and effect of chemicals on gelation were investigated by punch and dynamic tests. The breaking force and deformation values of heat-induced gel of acid surimi were less than their values of alkali and conventional surimi gel, and whiteness was greatly decreased, Gel point of acid surimi was decreased but it of alkali surimi was increased with increasing moisture content in the range of 80 to $85\%$. Storage modulus of acid surimi was the highest vaule in pH 6.8, but that of alkali surimi showed high value at neutral and slightly alkali pH. Propylene glycol increased storage modulus in $20\~50^{\circ}C$, hut urea and 2-mercaptoethanol suppressed it. Potassium bromide improved storage modulus in $20~80^{\circ}C$, The results suggest that alkai process is used for making surimi instead of conventional method.