• Title/Summary/Keyword: Heat Conduct

Search Result 132, Processing Time 0.03 seconds

A Study on the Performance Evaluation of Combined Heat Pump System according to the Ratio of Ground Heat Source and Water Heat Source (지열원 및 수열원 비율에 따른 복합열원 히트펌프시스템 성능 평가 연구)

  • Park, Sihun;Ko, Yujin;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.11-19
    • /
    • 2021
  • In this study, combined heat source heat pump system was implemented with 4 single heat source heat pumps each applied with a geothermal source and a water source. Five cases (Case1~Case5) were configured to conduct a performance comparison and analysis of the combined heat source heat pump system. First of all, as a result of analyzing the heat source, the case when 4 ground heat sources were applied (Case1) showed a uniform EST(Entering Source Temperature) distribution throughout the year since it is less affected by outside air compared to the case when 4 water heat sources were applied (Case5). In both winter and summer, the ground heat source maintained higher EST than the water heat source. Therefore, the system with high ratio of geothermal sources is advantageous for heating, and with high ratio of water heat sources is advantageous for cooling.

A Study on the Improvement of Mechanical Properties for an Engine Piston (엔진피스톤의 기계적 성질의 향상에 관한 연구)

  • 김영호;배원병;변흥석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.113-116
    • /
    • 1995
  • In this experimental study,aluminum hotforging was conduct to get superior pistion to cast piston. Cast structure of billet is destroyed, harmful defects is removed by forging process. We proposed the direction od die design by observing formability of product according to die shape. The microstructure of forged products with different preform was investigated to determine inital billet shape. We proposed appropriate heat treatment condition for improvement of mechanical properties.

  • PDF

Study on the Performance of Heat Pump Using Non-azeotropic Refrigerant Mixtures R-22+R-114 (비공비혼합냉매 R-22+R-114를 이용한 열펌프의 성능에 관한 연구)

  • 박기원;구학근;오후규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2131-2137
    • /
    • 1993
  • This study, examines the performance and the heat pump cycle systematizing characteristics for non-azeotropic refrigerant systems. In order to conduct such an examination, the cycle characteristics of heat pumps for pure R-22, R-114, and their mixtures were experimentally investigated. The results show that cooling/heating capacities for the mixtures was more suited at the evaporating temperature of $5^{\circ}C$ than that of $0^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$. The C.O.P of the 50 wt% mixtures was considerably higher than for pure R-22, and the compression power of the 25 wt% was as much as 60% lower than that of pure R-22. Even small fractional mixture variations can lead to significant changes in the characteristics of the heat pump cycle. This experiment verified the importance of accurate weight fractions of refrigerant mixtures.

Economic Analysis of Various Residential Geothermal Heat Pump System Capacities (주택용 지열히트펌프 시스템의 용량 변화에 대한 경제성 비교 분석)

  • Lee, Chung-Kook;Suh, Seung-Jik;Kim, Jin-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Geothermal heat pumps are known as the most efficient and environment-friendly heating and cooling system, and are also gaining acceptance in buildings. Building energy simulation program, EnergyPlus is used to calculate the energy consumption of residential buildings. This simulated energy consumption is essential for accurate economic analysis. Residential buildings with geothermal heat pumps have complex energy price structure. Electricity rates for residential buildings increase rapidly as the monthly use increases. This complex energy price structure makes the economic analysis complicated. The purpose of this study is to conduct economic comparison of residential geothermal heat pumps and provide a feasible approach in finding their economically feasible capacity.

Thermal Infrared Remote Sensing Data Utilization for Urban Heat Island and Urban Planning Studies

  • Lee, Hye Kyung
    • Journal of KIBIM
    • /
    • v.7 no.2
    • /
    • pp.36-43
    • /
    • 2017
  • Population growth and rapid urbanization has been converting large amounts of rural vegetation into urbanized areas. This human induced change has increased temperature in urban areas in comparison to adjacent rural regions. Various studies regarding to urban heat island have been conducted in different disciplines in order to analyze the environmental issue. Especially, different types of thermal infrared remote sensing data are applied to urban heat island research. This article reviews research focusing on thermal infrared remote sensing for urban heat island and urban planning studies. Seven studies of analyses for the relationships between urban heat island and other dependent indicators in urban planning discipline are reviewed. Despite of different types of thermal infrared remote sensing data, units of analysis, land use and land cover, and other dependent variable, each study results in meaningful outputs which can be implemented in urban planning strategies. As the application of thermal infrared remote sensing data is critical to measure urban heat island, it is important to understand its advantages and disadvantages for better analyses of urban heat island based on this review. Despite of its limitations - spatial resolution, overpass time, and revisiting cycle, it is meaningful to conduct future research on urban heat island with thermal infrared remote sensing data as well as its application to urban planning disciplines. Based on the results from this review, future research with remotely sensed data of urban heat island and urban planning could be modified and better results and mitigation strategies could be developed.

Condensation heat transfer of R407C and R410A in a horizontal smooth tube (R407C 및 R410A의 수평원관내 응축열전달)

  • 서정현;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.633-641
    • /
    • 1999
  • Experiments were carried out to investigate the condensation heat transfer characteristics for R22 and its alternatives, R407C (R32/125/134a, 23/25/52wt%) and R410A (R32/125, 50/50wt%). A concentric tube heat exchanger was made to conduct condensation heat transfer tests. Mass flux and saturation temperature of refrigerants at the test section inlet were varied to get the corresponding heat transfer coefficients. Serial and parallel input of secondary fluid (water) were applied to the test subsections. Compared with existing correlations of condensation heat transfer, experimental heat transfer coefficients obtained in this study were generally higher than the predicted values, and mean absolute deviations from several correlations were shown. Wall subcooling was introduced to get a new correlation for condensation heat transfer coefficients by modifying Shah's equation. The RMS deviation of the measured heat transfer coefficients from the new correlation in this study for R22 is 9.9% and that for R407C and R410A are 10.2% and 14.6%, respectively.

  • PDF

Flow Distributions in the Channel of Plate Heat Exchanger Applied in Vacuum Evaporating Distiller System

  • Jin, Zhen-Hua;Park, Gi-Tae;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.389-394
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present work, PHE is applied in the fresh water generator system. Fresh water generators or desalinators are installed in ship to convert seawater to fresh water using heat from engines. PHE is an important part of a condensing or evaporating system. Among many of factors which should be concentrated on, the heat transfer and pressure drop is most important parts during sizing and rating the performance of PHE. Flow maldistribution is common but it will significantly reduce the heat exchanger performance. In this paper provide a overview of PHE cover basic of theory and conduct a numerical approach for flow distribution in plate channel. An experimental study on the performance of fresh water generator system which developed by plate heat exchanger will presented in future research. Thus, extensive experiment and analysis is required to study the thermal and fluid flow characteristics of PHE.

  • PDF

Study on Heat Dissipation Characteristics of LED Frames Using Finite Elements Method (유한요소해석을 이용한 LED 프레임의 열전달 특성에 관한 연구)

  • Son, In-Soo;Kang, Sung-Jung;Jeon, Bun-Sik;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.935-941
    • /
    • 2020
  • In this study, the effect of different shapes on the heat dissipation characteristics of other porous frames on LED lighting frames was studied using finite element analysis. In addition, the heat transfer characteristics of LED frames were tested using a thermal imaging camera and the results of finite element analysis were compared to derive the optimal hole shape. According to the study, the heat dissipation effect was better for frames with hole compared to existing ones without holes. In particular, the heat dissipation characteristics test showed that for frames with holes, the rise time to the maximum temperature is fast and the maximum temperature is significantly lower. Also, we could see that the square and diamond shapes were smaller than the circular pores, but had a greater heat dissipation effect. Through this study, we have concluded that there is a limit to increasing the heat dissipation effect of the frame with a perforated shape, and it is necessary to conduct further research on the change in the shape of the frame in order to achieve a better heat dissipation effect in the future.

Transient heat transfer in thin films (초박막에서의 비정상 열전달)

  • Bai, C.H.;Chung, M.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • For the analysis of phonon heat transfer within short time and spatial scales, conventional macroscopic heat conduction equations with jump boundary conditions are tried and the results are compared to those of equation of phonon radiative transport(EPRT), which is one of microscopic transport equation. In transient state the macroscopic temperatures show far different behavior from EPRT. In steady state the hyperbolic temperatures with temperature jump at the wall from time relaxation model agrees well with EPRT temperatures. Since EPRT is also an approximate form of microscopic transport equation and there are no experimental results to verify the proposed model in this study, we can not conclude whether the approaching method from this study is valid or not. To the authors' knowledge, there are no experimental results available which can be used to test the validity of these models. Such an experiment, while difficult to conduct, would be invaluable.

Optimal design of a micro evaporator to maximize heat transfer coefficient (열전달 계수 최대화를 위한 마이크로 증발기의 최적 설계)

  • Sung, Tai-Jong;Oh, Dae-Sik;Seo, Tae-Won;Kim, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2097-2101
    • /
    • 2007
  • This paper presents an optimal design of a micro evaporator which maximizes the heat transfer coefficient. Number of gaps, spanwise distance and streamwise distance are selected as the geometric design parameters. Mass flow rate of the refrigerant is selected as the non-geometric design parameter. Temperature at the surface of the heater is measured to valuate the heat transfer coefficient. Nine experiments are conducted using $L_9(3^4)$ orthogonal array. Maximum heat transfer coefficient is 640 W/$m^2K$ at the parameters of 2 gaps, 0.2 mm spanwise distance, 1.0 mm streamwise distance and 0.72 g/s mass flow rate. Among the 3 geometric parameters, the spanwise distance is the most sensitive parameter influencing the heat transfer coefficient. We conduct a second stage of experiment to increase the heat transfer coefficient by reselecting the mass flow rate. We concluded that 0.87 g/s is the optimized flow rate for an active micro cooler resulting in a heat transfer coefficient of 651 W/$m^2K$.

  • PDF