• Title/Summary/Keyword: Heat Condition

Search Result 3,917, Processing Time 0.034 seconds

Evaporation Cooling of Droplet due to Surface Roughness under Radiative Heat Input Condition (복사가열조건에서 표면 거칠기에 따른 액적의 증발 냉각)

  • Bang Chang-Hoon;Kwon Jin-Sun;Yea Yong-Taeg
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.14-19
    • /
    • 2004
  • The objective of the present work is to examine evaporation cooling of droplet due to surface roughness under radiative heat input condition. The surface temperatures varied from $80\~160^{\circ}C$ on aluminum alloy (AL 2024) and surface roughness was $0.18{\mu}m,\;1.36{\mu}m$. The results are as follows; Regardless of surface roughness under radiative heat input condition, as droplet diameter is larger, the in-depth temperature of solid decreases and evaporation time increases. In the case of $0.18{\mu}m\;and\;1.36{\mu}m$ of surface roughness, the larger the surface roughness is, the less the evaporation time is and the larger the temperature within the solid is. In the case of $Ra=0.18{\mu}m$ evaporation time and time averaged heat flux for radiative heat input case is shorter than for the conductive case.

Base heat flux calculation along variable pressure ratio and base temperature condition on launch vehicle (압력 조건과 기저 온도 조건에 따른 기저 열단전단률 계산)

  • Kim, J.G.;Lee, J.W.;Choi, J.K.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.318-320
    • /
    • 2011
  • Numerical study was conducted to simulate the heat transfer on the real launch vehicle base. Three different base temperatures were chosen, to simulate the heat accumulation on the base. Moreover, six different pressure ratio conditions were used to express the different air conditions. As a result, the table that can used to estimate the base heat fox along the base temperature and pressure condition was made.

  • PDF

A Study on Rotor Eddy Current Loss and Thermal Analysis of PM Synchronous Generator for Wind Turbine (풍력터빈 PM형 동기발전기의 와전류손실과 열 해석에 관한 연구)

  • Choi, Man Soo;Chang, Young Hag;Park, Tae Sik;Jeong, Moon Seon;Moon, Chae Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1575-1581
    • /
    • 2014
  • In this paper, eddy current loss, iron loss and heat transfer of PMSG with 2,000kW capacities were analyzed for wind turbine. The PMSG with 3 split magnet was analyzed using ansoft maxwell commercial program and, generator was tested by Back to Back converter with no load condition at laboratory. Rotor surface temperature was measured by Pt100 sensors for investigating heat transfer from rotor to atmosphere. The simulation results shows 27.4kW eddy current loss in no load condition and 50.2kW eddy current loss in rated load condition with 3 split magnet, and also shows 4.3kW iron loss in no load condition and 7.3kW iron loss rated load condition. The heat transfer coefficient of convection between rotor surface and atmosphere was investigated by $9.6W/m^2{\cdot}K$. Therefore the heat transfer from rotor to atmosphere was about 17kW(54%) and from rotor to air-gap was about 14.6kW(46%) in no load condition. It is identified that the cooling system for stator have to include the 46% of iron loss, and heat dissipation structure of rotor surface have to be suggested and designed for efficiency improvement of generator.

An Experimental Study on the Performance of the Louver Fin Type Heat Exchanger by the Change of the Driving Condition (운전조건 변화에 따른 루버휜 열교환기 성능변화에 관한 실험적 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Kim, Dong-Hwi;Park, Byung-Duck
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.440-445
    • /
    • 2008
  • The present study was investigated the effect of the driving condition on the performance of a louver fin and tube type heat exchanger under frosting condition. Heat transfer rate and pressure drop by frost were experimentally investigated. Effects of the wet blub temperature and the shape of a fin on heat transfer performances has been also investigated. The key parameters were fin type(louver and corrugate fin) and the wet blub temperature of air (0.5, 1.0, $1.5^{\circ}C$). The heat transfer performance of the louver fin and tube type heat exchanger was higher by 0.89% than the corrugate fin type. As the wet blub temperature of air were increased, the heat transfer rate, pressure drop and mass of frost of three test models(Type A, B, C) were increased. Especially, the maximum heat transfer rate and maximum pressure drop were shown for the louver fin and tube type heat exchanger. As a experimental result, the enhancement factor(EF) of louver fin and tube type heat exchanger was $0.2{\sim}0.4$ due to the high pressure drop.

  • PDF

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2007
  • A numerical simulation on the heat transfer and flow field was carried out to improve the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. Based on this study, it is noted that the present geometry of the heat exchanger causes poor heat transfer since the air inside shell does not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle, but it causes the increasement of the pressure drop. In this paper, the effects of the location and size of the sealing strips and flow rate through the heat exchanger on the heat transfer and pressure drop are studied.

Finite element analysis for surface hardening of SM45C round bar by diode laser (다이오드 레이저를 이용한 SM45C 환봉 표면경화 열처리의 유한요소해석)

  • Cho, Hae-Yong;Kim, Kwan-Woo;Lee, Jae-Hoon;Suh, Jeong;Kim, Jong-Do
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.683-688
    • /
    • 2007
  • Surface heat treatment of SM45C round bar by diode laser was simulated to find it's condition by using commercial finite element code MARC. Due to axisymmetric geometry, a quarter of model for SM45C round bar was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat and mass density were given as a function of temperature. Rotation speed of round bar and feed rate of beam were considered to design heat source model. Shape parameter values of heat source were determined by beam profile. As results, Three dimensional heat source model for diode laser beam conditions of surface hardening has been designed by the comparison between the finite element analysis results and experimental data on SM45C round bar. Diode laser surface hardening for SM45C round bar was successfully simulated and it should be useful to determine optimal heat treatment condition.

  • PDF

Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace (산업용 가스화 용융로를 위한 산소 버너의 개발)

  • Bae, Soo-Ho;Lee, Uen-Do;Shin, Hyun-Dong;Kim, Soung-Hyoun;Gu, Jae-Hoi;Yoo, Young-Don
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF

Development of high-strength ion nitrided gear (고강도 이온질화 기어의 개발)

  • Kim, Young-Hoon;Sun, Cheol-Gon;Kim, Han-Goon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.184-189
    • /
    • 1994
  • The heat treatment charaterristic of SCM 440 and B 16 steels has been investigated in various condition(A, B and C) to the effect of heat treatment on mechanical properties, and the following results were obtained. 1. We are obtained a good nitriding characteristic in bainitic structure than other heat treatment cycle in our experiment. 2. Fatigue characteristic has shown in order of B)C)A condition as heat treatment cycle. 3. The effective hardening depth and fatigue characteristic has been excellented in B 16 than SCM 440 after the nitriding and Q. T for Band C condition. 4. Nitriding depth has been increased in addition of Cr, V and the nitriding efficiency is increased as easiness of banite formation to wide range of cooling rate by addition of Mo. 5. The depth of compound layer in parallel surface, notched slop plane and notched bottom has been varied to the nitriding depth of 5, 4 and 3 ${\mu}$ in relatively uniform pattern after 10h nitriding treatment for SCM 440 into A condition.

  • PDF

A Study on Durability Characteristics of Automobile Clutch Diaphragm Spring Steel According to Heat-Treatment Condition (자동차 클러치용 다이아프램 스프링 강(50CrV4)의 열처리 조건에 따른 내구특성에 관한 연구)

  • 남욱희;이춘열;채영석;권재도;배용탁;우승완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.137-143
    • /
    • 2000
  • An automobile clutch diaphragm spring is operating in a closed clutch housing under high temperature and subject to high stress concentration in driving condition, which frequently causes cracks and fracture. The material of spring is required to possess sufficient fatigue strength and tenacity, which depend largely on the condition of tempering heat treatment. In this paper, specimens are made under a number of different tempering temperatures md tested to find the optimal tempering heat treatment condition. The experiments include the verification of microscopic structure, hardness, tensile strength, fatigue crack growth rate, stress intensity factor range and residual stress. Also, decarbonization, which occurs in actual heat treatment process, is measured and allowable decarbonization depth is studied by durability test.

  • PDF

An Experimental Study on Calibration Method of Heat Flux Sensor by using Helium Gas (헬륨을 이용한 열유속센서 검정방법의 실험적 연구)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1219-1224
    • /
    • 2004
  • The objective of this study is to propose an experimental calibration facility in which a heat flux sensor can be calibrated under conductive condition by using helium gas. The heat flux calibration facility was designed, simulated and manufactured for use in a high heat transfer condition. It delivers heat fluxes up to a maximum of 35 KW $m^{-2}$. A copper block heated electrically with 3.5 KW power is designed to produce uniform temperature up to 600 K across its face. High heat fluxes are provided between hot plate and cold plate by 1 mm height helium filled gap. A cold plate is maintained around 300 K through pool boiling using a refrigerant and water-cooled heat exchanger. A simulation was conducted to verify the design of the main test section. To verify the performance of calibration facility, a heat flux sensor was examined. The measured heat fluxes were compared to the calculated one.

  • PDF