• Title/Summary/Keyword: Heat Capacity Ratio

Search Result 214, Processing Time 0.029 seconds

Conjugate Heat Transfer Characteristics in a Ribbed Channel:Effect of Reynolds Number and Heat Capacity Ratio (요철이 설치된 채널 내에서 레이놀즈수와 열용량비에 따른 복합열전달 특성)

  • Song, Jeong-Chul;Ahn, Joon;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2297-2302
    • /
    • 2007
  • Numerical simulations are conducted to analyze conjugate heat transfer characteristics in a ribbed channel. In this simulation, the effects of Reynolds number and heat capacity of the solid channel wall on convective heat transfer are observed in the turbulent flow regime. In the case of the conducting wall against isothermal wall, the relative ratio of the thermal resistance between the solid wall and the flow field varies with Reynolds number. Thus the characteristics of the conjugate heat transfer are changed with the Reynolds number. Heat capacity ratio affects the temperature fluctuation inside solid wall. The temperature fluctuation inside the solid wall decreases with increasing the heat capacity of the solid wall so that the convective heat transfer increases. When the thermal conductivity ratio is smaller than 10, the effects of flow characteristics on heat transfer are changed.

  • PDF

Analysis of Counterflow Heat Exchangers with the Concept of Available Energy (가용에너지를 이용한 대향류 열교환기의 해석)

  • 김수연;정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2189-2195
    • /
    • 1992
  • The performance of heat exchanger as an energy conversion device can be described by the available energy output and efficiency. The efficiency is defined as the ratio of the available energy output and the exergy of the heat source flow. In present study, a counterflow heat exchanger is analyzed and the conditions to obtain maximum output is numerically determined. As a result, the avilable energy obtained by the cold flow can be determined as functions of the heat capacity flow, the cold flow inlet temperature and the heat transfer capacity of heat exchanger. At the maximum output condition the heat capacity flow of the cold fluid is larger than that of the heat source, and the heat capacity flow ratio is equal to the ratio of the cold flow inlet temperature and the atmospheric temperature. And the avilable energy output increases as the heat transfer capacity of the heat exchanger become larger, but in the economic point of view there is also an optimum heat transfer capacity for a given heat source flow.

An Effect on the Solution Crystallization Temperature Difference and Cooling Capacity of the Absorption Chiller by a Solution Cooler in the Absorber (흡수기내 용액 냉각기가 흡수식 냉동기의 용액 결정화 온도차와 냉각 용량에 미치는 효과)

  • Chin, Sung-Min;Lee, Jae-Heon;Jurng, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1518-1523
    • /
    • 2003
  • The objective of the present work is to investigate an effect on the solution crystallization temperature difference and the cooling capacity of the absorption chiller by a solution cooler in the absorber. The cooling capacity of the absorption chiller can be higher, with the enhanced performance of the solution heat exchangers. But, because the solution crystallization temperature difference becomes smaller at the absorber inlet, the heat capacity of the solution heat exchangers might be limited by the danger of crystallization, which can cause the serious damages. In this paper, the heat capacity ratio of the solution cooler is defined as the ratio of the heat capacity of the solution cooler to that of the absorber. If it becomes larger in the additional type solution cooler, the solution crystallization temperature difference is augmented and the cooling capacity is also increased.

  • PDF

A Study on the Performance for the Cylindrical Packed Bed Sensible Heat Storage Unit (충진층 현열 축열조의 성태해소에 관한 연구)

  • Kwon, Sun-Seok;Kim, Si-Beom;Gu, Bon-Yeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.85-93
    • /
    • 1990
  • A numerical study on the cylindrical packed bed sensible heat storage unit was accomplished by finite difference method. Relation between the heat storage rate and the mechanical pumping energy and the characteristics of the heat storage were investigated for various in let velocities and porosities. In this study, the numerical results are as follows: 1) The temperature distributions of solid and fluid rapidly reached the steady state as the heat capacity ratio was increased. 2) The efficiency of the heat storage was increased as the heat capacity ratio was decreased. For constant heat capacity ratio, however, the efficiency of the heat storage was increased at lower porosity. 3) It is very profitable to design the heat storage system such that the porosity is larger for the large flow rate and samller for small flow rate.

  • PDF

A Study on the Performance for the Cylindrical Packed Bed Sensible Heat Storage Unit (충진층 현열 축열조의 성태해소에 관한 연구)

  • Kwon, Sun-Seok;Kim, Si-Beom;Gu, Bon-Yeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.235-235
    • /
    • 1990
  • A numerical study on the cylindrical packed bed sensible heat storage unit was accomplished by finite difference method. Relation between the heat storage rate and the mechanical pumping energy and the characteristics of the heat storage were investigated for various in let velocities and porosities. In this study, the numerical results are as follows: 1) The temperature distributions of solid and fluid rapidly reached the steady state as the heat capacity ratio was increased. 2) The efficiency of the heat storage was increased as the heat capacity ratio was decreased. For constant heat capacity ratio, however, the efficiency of the heat storage was increased at lower porosity. 3) It is very profitable to design the heat storage system such that the porosity is larger for the large flow rate and samller for small flow rate.

Optimization of Heat exchanger Capacity to Maximize the Performance and Energy Efficiency of TEM Dehumidifiers (열전모듈 제습기의 제습 능력 및 에너지 효율 극대화를 위한 열교환기 용량 최적화)

  • Lee, Tae-Hee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.13-20
    • /
    • 2021
  • The capacity optimization of the heat exchanger of the TEM dehumidifier was performed through numerical analysis. If the ratio of the size of heat exchangers on the cold and hot surfaces of the TEM is not appropriate, the larger the size of the heat exchanger results the lower performance and efficiency. Optimizing the ratio of heat exchangers on the cold surface of TEM can improve the performance and the efficiency compared to when the ratio is 50%. The optimal proportion of cold surface heat exchangers is inversely proportional to the sum of the size of the heat exchangers on the cold and hot surfaces. When the optimum ratio of cold surface heat exchanger was applied, the larger the sum of size of the two heat exchangers results the greater the improvement of the performance and efficiency, compared to when the ratio of cold surface heat exchangers is 50%.

Thermal Energy Storage and Release Characteristics of the Soil in the Greenhouse Equipped with Heat Pump and Latent Heat Storage System (열펌프-잠열축열 시스템 온실에서 토양의 열저장 및 방열 특성)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In order to obtain the information of bio-environment control, the thermal characteristics of soil in the greenhouse heated by the heat pump and latent heat storage system were experimentally analyzed. The experimental systems were composed of the greenhouse with a heat pump and a latent heat storage system (system I), the greenhouse with a heat pump (system II), the greenhouse with a latent heat storage system (system III), and the greenhouse without auxiliary heating system (system IV). The thermal characteristics experimentally analyzed in each system were temperature of soil layers, soil heat storage and release, soil heat capacity and soil heat storage ratio. The results could be summarized as follows. 1. Time to reach the highest temperature at 20cm deep in soil layers of the crop routs in case of system I was shown to be delayed by 6 hours in comparison to the time of the highest temperature at the soil surface. 2. In the clear winter days, the stored heat capacity values fur the system I and the system II were shown to be 22.3% and 11.0% higher than the released heat capacity respectively, and the stored heat capacity values for the system III and the system IV were shown to be 6.2% and 29.6% lower than the released heat capacity respectively This confirms that the system I provided the best heat storage effect. j. The heat quantity values stored or released were shown to be highest at 5 cm depth of soil layers. And it was reduced with increasing of depth of soil layers until 20 cm and was not changed under the soil layer of 20 cm depth. 4. The heat absorption rates of soil, the ratio between supplied and stored heat energy, fur both the system I and system II were lower than 23%.

A Second-Order Analysis of VM Heat Pumps (VM열펌프의 2차해석)

  • Choi, Y.S.;Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.208-218
    • /
    • 1996
  • Performance of a VM heat pump is considerably affected by various losses, such as enthalpy dump, reheat loss, pumping loss, conduction loss and shuttle loss. A second-order analysis model of VM heat pumps, which allows consideration of the major losses, was presented. Actual heat transfer rates for heat exchangers were calculated from the heat transfer rates obtained by the adiabatic analysis and various losses. New effective temperatures of heat exchangers were calculated from the actual heat transfer rates and the mean heat transfer coefficients until there was no appreciable change in the effective temperatures. Effects of design parameters, such as phase angle, swept volume ratio, regenerator length and speed on heating capacity, cooling capacity and COP were shown.

  • PDF

Effectiveness Measurement of a Double-Tube Heat Exchanger for a Hydrogen Liquefaction System (수소액화 시스템용 이중관 열교환기의 유용도 측정)

  • Choi, H.J.;Baik, J.H.;Kang, B.H.;Choi, Y.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • The effectiveness of a double-tube heat exchanger has been investigated experimentally. This problem is of particular interest in the design of the heat exchanger in a hydrogen liquefaction system. Temperature, pressure, and mass flow rate for hydrogen were measured both in inner tube and in annulus of a double-tube heat exchanger. The effectiveness could be evaluated from the measured temperature and mass flow rate. It is found that the effectiveness increases with an increase in the heat transfer area of a double-tube heat exchanger and with a decrease of the heat capacity ratio. But the increase rate of the effectiveness decreased with a decrease of the heat capacity ratio. Therefore, it is presented that a criterion for selecting the heat exchanger length and heat capacity ratio to obtain the effectiveness required in a hydrogen liquefaction system.

  • PDF

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particl Flow in a Pipe(II) - Mechanism of Heat Transfer- (고체 분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용 (II) - 열전달 기구 -)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.214-224
    • /
    • 1990
  • A "two-fluid" model using thermal eddy diffusivity concept and Lumley's drag reduction theory, is proposed to analyze heat transfer of the turbulent dilute gas-particle flow in a vertical pipe with constant wall heat flux. The thermal eddy diffusivity is derived to be a function of the ratio of the heat capacity-density products .rho. over bar $C_{p}$ of the gaseous phase and the particulate phase and also of the ratio of thermal relaxation time scale to that of turbulence. The Lumley's theory dictates the variation of the viscous sublayer thickness depending on the particle loading ratio Z and the relative particle size $d_{p}$/D. At low loading ratio, the size of viscous sublayer thickness is important for suspension heat transfer, while at higher loading, the effect of the ratio .rho. $_{p}$ over bar $C_{p}$$_{p}$/ .rho. $_{f}$ over bar $C_{p}$$_{f}$ is dominant. The major cause of decrease in the suspension Nusselt number at lower loading ratio is found to be due to the increase of the viscous sublayer thickness caused by the suppression of turbulence near the wall by the presence of solid particles. Predicted Nusselt numbers using the present model are in satisfactory agreements with available experimental data both in pipe entrance and the fully developed regions.