• Title/Summary/Keyword: Heat Balance Method

Search Result 194, Processing Time 0.027 seconds

The Comparative Analysis of Drying-Conditions, -Rates, -Defects and Yield, and Heat-Efficiency in Solar-Dehumidification-Drying of Oaks With Those in Conventional Air-, Semi-Greenhouse Type solar-, and Kiln- Drying (참나무류(類)의 제습태양열건조(除濕太陽熱乾燥)의 조건(條件), 속도(速度), 결함(缺陷), 수율(收率) 및 열효율(熱效率)과 관행(慣行) 천연(天然), 반온실형(半溫室型) 태양열(太陽熱) 및 열기건조(熱氣乾燥)와의 비교(比較)·분석(分析))

  • Lee, Hyoung-Woo;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.22-54
    • /
    • 1989
  • Seasonal semi-greenhouse type solar-drying of 2.5cm-and 5.0cm-thick lumber of Quercus aliena Blume and Quercus variailis Blume was carried out to investigate the possibility of solar-drying of wood and to decide the active solar-drying period in Korea. In the active solar-drying period obtained solar-dehumidification, semi-greenhouse type solar-, air- and kiln-drying of 2.5cm -thick lumber of oaks were carried out to analyze drying-rates. -defects, and -yield in each drying-method and to calculate daily total absorbed solar-radiation the solar dryers. The energy balance equations were set up, considering all the energy requirements, to analyze the heat efficiencies of semi-greenhouse type solar and solar-dehumidification-dryer. In a seasonal drying the drying rate of semi-greenhouse type solar-dryer was highest in summer, and greater in fall, spring, and winter in order. Solar-drying time was 45% in summer to 50% in winter of the air-drying rime, and more serious drying-defects occurred in air-drying than in solar-drying. In the active solar-drying period. April, May, and June, the average drying rate in solar-dehumidification-drying was 1.0%/day and greater than 0.8%/day in semi-greenhouse type solar-drying. In solar-dehumidification-drying the time required to dry lumber to 10% moisture content was less than 60 days, and solar-dehumidification-drying showed the highest drying-yield, 65.01%, than the other drying methods. The daily total absorbed solar radiations were 8.51MJ on the roof collector and 6.22 MJ on the south wall collector. In the energy blance 69.48% of total energy input was lost by heat conduction through walls, roof. and floor 11.68% by heat leakage, 0.33% by heating the internal structures of the solar-dryer and 5.38% by air-venting. Therefore the heat efficiency of semi-greenhouse type solar-dryer 13.13%, was lower than that of solar-dehumidification-dryer, 14.04%. Solar-drying of lumber in Korea showed the possibility to reduce the air-drying-time in every season and the efficiency of solar-dehumidification drying was higher than that of semi-greenhouse type solar-drying.

  • PDF

Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission (음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가)

  • Kang, Moon-Phil;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.381-389
    • /
    • 2000
  • Metal matrix composite(MMCs) have been rapidly becoming one of the strongest candidates for structural materials for high temperature application. It is well recognized that MMCs always experience at least one large cool-down from processing temperature before my significant applied service loading. Due to the large difference in thermal expansion coefficient between the fiber and matrix, large thermal residual stresses generally develop in composites. It was reported from many previous studies that the effects of thermal residual stress on mechanical properties and fracture behavior were much more complex and dramatic than conventional engineering materials. Therefore it is crucial to evaluate the effect of heat treatment which changes the characteristic of distribution of thermal residual stress in MMCs. Single fiber composite(SFC) test based on the balance in a micromechanical model is a quite convenient method to evaluate interfacial shear strength(IFSS) and the failure mode of composite. In this study the effect of heat treatment on IFSS and the microscopic failure mechanism of MMC is investigated by combining acoustic emission(AE) technique with SFC test. The characteristic of AE signal, IFSS and microscopic failure mechanism due to heat treatment condition is discussed.

  • PDF

Experimental Studies of the Short-Term Fluctuations of Net Photosynthesis Rate of Norway Spruce Needles under Field Conditions (야외조건하(野外條件下)에서 독일가문비(Picea abies Karst) 침엽(針葉)의 순(純) 광합성률(光合成率)의 단기(短期) 변화(變化)에 대한 실험적(實驗的) 연구(硏究))

  • Bolondinsky, V.;Oltchev, A.;Jin, Hyun O.;Joo, Yeong Teuk;Chung, Dong Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • Canopy structure conductances of a Norway spruce forest in the Solling Hills(Central Germany) and Central Forest Biosphere Reserve(320km to the north-west from Moscow) were derived from LE(latent heat flux) and H(sensible heat flux) fluxes measured(by Eddy correlation technique and energy balance method) and modelled(by one dimensional non-steady-state) SVAT(soil-vegetation-atmosphere-transfer) model(SLODSVAT) using a rearranged Penman-Monteith equation("Big-leaf" approximation) during June 1996. They were compared with canopy stomatal conductances estimated by consecutive intergrating the stomatal conductance of individual needles over the whole canopy("bottom-up" approach) using SLODSVAT model. The result indicate a significant difference between the canopy surface conductances derived from measured and modelled fluxes("top-down" approach) and the stomatal conductances modelled by the SLODSVAT("bottom-up" approach). This difference was influenced by some nonphysiological factors within the forest canopy(e.g. aerodynamic and boundary layer resistances, radiation budget, evapotranspiration from the forest understorey). In general, canopy surface conductances derived from measured and modelled fluxes exceeded canopy stomatal conductance during the whole modelled period, The contribution of the understorey's evapotranspiration to the total forest evapotranspiration was small (up to 5-9% of the total LE flux) and was not depended on total radiation balance of forest canopy. Ignoring contribution of the understorey's evapotranspiration resulted in an overestimation of the canopy surface conductance for a spruce forest up to 2mm/s(about 10-15%).

  • PDF

Radiation Flux Impact in High Density Residential Areas - A Case Study from Jungnang area, Seoul - (고밀도 주거지역에서의 복사플럭스 영향 연구 - 서울시 중랑구 지역을 대상으로 -)

  • YI, Chae-Yeon;KWON, Hyuk-Gi;Lindberg, Fredrik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.26-49
    • /
    • 2018
  • The purpose of this study was to verify the reliability of the solar radiation model and discuss its applicability to the urban area of Seoul for summer heat stress mitigation. We extended the study area closer to the city scale and enhanced the spatial resolution sufficiently to determine pedestrian-level urban radiance. The domain was a $4km^2$ residential area with high-rise building sites. Radiance modelling (SOLWEIG) was performed with LiDAR (Light Detection and Ranging)-based detailed geomorphological land cover shape. The radiance model was evaluated using surface energy balance (SEB) observations. The model showed the highest accuracy on a clear day in summer. When the mean radiation temperature (MRT) was simulated, the highest value was for a low-rise building area and road surface with a low shadow effect. On the other hand, for high-rise buildings and vegetated areas, the effect of shadows was large and showed a relatively low value of mean radiation temperature. The method proposed in this study exhibits high reliability for the management of heat stress in urban areas at pedestrian height. It is applicable for many urban micro-climate management functions related to natural and artificial urban settings; for example, when a new urban infrastructure is planned.

Study on the Changes in Evapotranspiration according to the Decentralized Rainwater Management (분산식 빗물관리시설 적용에 따른 증발산 변화 연구)

  • Han, Young-Hae;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.3-10
    • /
    • 2012
  • In this study, the influence of decentralized rainwater management over the changes in evapotranspiration was analyzed. The analysis method was obtained by establishing the decentralized rainwater management plan according to different scenarios, and subsequently examined evapotranspiration in the plan. Scenario 1 refers to the analysis of the existing situation, in which was 100% of a parking lot is asphalt pavement. In Scenario 2, the pavement of the parking surface in the parking lot is replaced with lawn blocks. In Scenario 3, some asphalt pavement was removed to establish a flower-bed type infiltration system to allow rainwater to permeate. In Scenario 4, infiltration and storage of rain water would be achieved by transforming the parking surface into lawn blocks, keeping the asphalt for the parking road while establishing a vegetation strip. The amount of evapotranspiration of the target site was analyzed with a water budget analysis program (CAT) using the 2001 meteorological data for each scenario According to the analysis values of S2 and S3, it was found that evapotranspiration is critically affected by the amount of area replaced with pervious area in the total target site. An energy equivalent to 680kWh is required for 1 ton of water to evaporate. Hence, it can be seen that the active inducement of evapotranspiration in urban area makes a positive contribution not only to heat island mitigation, but also to the small-scale water circulation process in a city.

A Comparative Study of Eastern and Western Nursing for Pyrexia Patient (발열환자의 동.서 간호 비교고찰)

  • Kung, Hyun-Sook;Kim, Won-Ock;Lee, Jung-Min
    • Journal of East-West Nursing Research
    • /
    • v.1 no.1
    • /
    • pp.40-49
    • /
    • 1997
  • This study was done for understanding the desirable direction of eastern and western nursing by comparing the nursing practice for the Pyrexia patient occuring most commonly. Body temperature usually maintains around $37^{\circ}C$ owing to the thermoregulatory center but pyrexia is caused by exogenous pyrogen like infection, cancer or disturbances in body's homeostatic heat balance. Pyrexia is defined that body temperature rise above $37.2^{\circ}C$. It has chill phase, course of the fever, termination accompanied various symptoms. Oriental medicine explains that pyrexia comes from Yang's(陽) abundance and Yin's(陰) lack. Pyrexia mainly happens when body constitution is in bad condition by Six Dirty's(六陰) affection to Wi Area (偉分). It also occurs because of unbalance between Qi (氣) and Yin(陰) caused by the lack in Seven Emotions, labor, food. The Sanghanron(傷寒論), explains that pyrexia is categorized exogenous fever like Poong Han(風寒), Poong Yul(風熱), Sup Yul(濕熱) and endogenous fever due to the Qi and blood deficiency. Explained above, even though pyrexia has different meaning in oriental medicine and western medicine, but this study have compared the oriental and western medicine assuming that pyrexia is rise of body temperature. From this point of view, oriental and western nursing shows the similarity in the field of 1) use of antipyretic to control the body temperature 2) rest and comfort 3) watering 4) nutrition and case study was executed in nursing practice. From the above study, western nursing has superiority in decreasing the patient's risen body temperature using antipyretic and ice bag. But in case of empty heat, oriental nursing which recommends the patient's body keep warm and prevent the use of ice bag as the first step and helps patient's sweating by drinking of hot water was comparatively effective. In conclusion, it is desirable that oriental nursing emphasizing the supportive nursing and western nursing should be harmonized according to the status of pyrexia patient and it is needed to study the nursing method appropriate in our culture.

  • PDF

Dynamic Line Rating Estimation Using Indirect Conductor Method in Overhead Transmission Lines (간접도체 방식을 이용한 가공송전선의 동적송전용량 추정)

  • Kim, Sung-Duck;Lee, Seung-Su;Jang, Tae-In;Kang, Ji-Won;Lee, Dong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.189-197
    • /
    • 2004
  • The thermal rating of an overhead conductor, which is the maximum allowable current, is generally calculated on the basis of heat balance equation found in IEEE P738 standard. This is given as a function of the weather conditions such as air temperature, wind speed, wind direction, and sun heat. Wind speed among such weather parameters is strongly affected on determining the line rating when it appears very low level. Therefore there may occur inaccuracy since most anemometers used in line rating monitor systems may show low resolutions and stall speed performance. In this paper, we introduce a new methodology for determining the dynamic line rating in overhead transmission lines, without using my anemometer. It was shown that wind speed can be estimated by the temperatures of 2 indirect conductors, and through experimental study, the dynamic line rating obtained by the estimated wind speed was very closely that of weather model.

Continuous monitoring of the canopy gas exchange of rice and soybean based on the aerodynamic analysis of the plant canopy

  • Tanaka, Yu;Katayama, Hiroto;Kondo, Rintaro;Homma, Koki;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.60-60
    • /
    • 2017
  • It is important to measure the gas exchange activity of the crops in canopy scale to understand the process of biomass production and yield formation. Thermal imaging of the canopy surface temperature is a powerful tool to detect the gas exchange activity of the crop canopy. The simultaneous measurement of the canopy temperature and the meteorological data enables us to calculate the canopy diffusive conductance ($g_c$) based on the heat flux model (Monteith et al. 1973, Horie et al. 2006). It is, however, difficult to realize the long-term and continuous monitoring of $g_c$ due to the occurrence of the calculation error caused by the fluctuation of the environmental condition. This is partly because the model assumption is too simple to describe the meteorological and aerodynamic conditions of the crop canopy in the field condition. Here we report the novel method of the direct measurement of the aerodynamic resistance ($r_a$) of the crop canopy, which enables us the stable and continuous measurement of the gas exchange capacity of the crop plants. The modified heat balance model shows the improved performance to quantify $g_c$ under the fluctuating meteorological condition in the field. The relationship between $g_c$ and biomass production of rice and soybean varieties is also discussed in the presentation.

  • PDF

Drying Characteristics by Infrared Heating of agricultural products (원적외선 가열에 의한 농산물의 건조특성)

  • Sang, Hie-Sun;Bae, Nae-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 2 to 50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of agricultural products. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the agricultural products. Energy for moisture evaporation is supplied by the infrared radiant energy. The optimum temperature and drying time for the best drying conditions of changing the red peppers with the moisture content of 18% and the restore rate of 80~85% are $80^{\circ}C$ and 44 hours. The performance of radiation tubes coating with the radiation paint developed in this research has the energy of $2.27{\times}103W/m^2{\mu}m$, $150^{\circ}C$ within the scope of radiation wave length of $2{\sim}30{\mu}m$ and has the radiation 0.92~0.93, which is superior to the general radiation tubes. The extinction coefficient according to the band pass filter using the 4 flux theory ha higher dependability on wave length, accounting for $2{\sim}17{\mu}m$ and $5{\times}105{\sim}106m-1$. A comparison between the theoretical energy transfer whose figures are interpreted according to 4 flux theory and the experimental energy transfer of far infrared dryer leads to the findings of the agreement less than 5%.

  • PDF

A Numerical Study on the Spray Dryer Characteristic for Manufacture of Deep Sea Water Salt (해양심층수 기능성소금 제조를 위한 분무건조기 특성의 수치해석적 연구)

  • Kim, Hyeon-Ju;Shin, Phil-Kwon;Park, Seong-Je
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.24-29
    • /
    • 2003
  • Deep sea water has cold temperature, abundant nutrients and minerals, and good water quality that is pathogen-free and stable. Compared with surface water, deep sea water contains more nutrition salt, such as nitrogen and phosphor. Moreover, if has the good balance of minerals. Because of the ability of the spray drying process to produce a free-flowing power considering of spherical particles with a well-defined size distribution and the rapid drying times for heat-sensitive material, spray drying is attractive for a wide range of applications spray drying is a unique unit operation in which powders are produced from a liquid feed in a single processing step. Key component of the process are atomizer, spray chamber. Design of spray chamber should be based on the atomizer type, the production rate, and the particle size required. Because of the complex processes taking place during spray drying, traditional design method are based on pilot-plant tests and empirical scale-up rules. Modern technique such as CFD have a role to play in design and troubleshooting.

  • PDF