• Title/Summary/Keyword: Heat (Mass) Transfer Coefficient

Search Result 382, Processing Time 0.031 seconds

Heat Transfer Correlation during Gas-Cooling Process of Carbon Dioxide in a Horizontal Tube

  • Kang Byung-Ha;Choi Yi-Cheol;Kim Suk-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2006
  • The characteristics of heat transfer and pressure drop have been investigated experimentally during gas-cooling process of carbon dioxide. The results of this study are useful information in the design of a heat exchanger of $CO_2$ refrigerator. The test section consists of 6 series of copper tube, 4.15 and 2.18mm ID, respectively. The inlet temperature, the operating pressure, and the mass flux are varied in the range of $80{\sim}120^{\circ}C,\;{7\sim}10MPa,\;and\;400{\sim}1,900kg/m^2s$, respectively. The heat transfer coefficient of $CO_2$ is affected by temperature, inlet pressure, and mass flux of $CO_2$. At the maximum HTC, the temperature of $CO_2$ nearly accords with the psuedocritical temperature. It is found that the pressure drop is substantially affected by mass flux and inlet pressure of $CO_2$ . The results have been compared with those of previous work. The heat transfer correlation at the gas-cooling process has been also suggested which predicts within the error of 20%.

Heat Transfer Characteristics During Gas Cooling Process of Carbon Dioxide in a Horizontal Tube (수평관내 초임계 영역의 Co2 냉각 열전달 특성)

  • Son, Chang-Hyo;Lee, Dong-Gun;Oh, Koo-Kyu;Jeong, Si-Young;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • The heat transfer coefficient and pressure drop during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flowmeter, an evaporator, and a gas cooler(test section). The main components of the water loop consist of a variable-speed pump, an isothermal tank, and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The test section consists of smooth, horizontal stainless steel tube of the outer diameter of 9.53mm and of the inner diameter of 7.75mm. The length of the test section is 6m. The refrigerant mass fluxes were 200∼300kg/(m2$.$s) and the inlet pressure of the gas cooler varied from 7.5㎫ to 8.5㎫. The main results were summarized as follows : Pressure drop of CO2 increases with increasing gas cooler pressure. The friction factors of CO2 in a horizontal tube show a relatively good agreement with the correlation by Blasius. The heat transfer coefficient of CO2 in transcritical region increases with decreasing gas cooler pressure and decreasing mass flux of CO2. Most of correlations proposed in a transcritical region showed significant deviations with experimental data except for those predicted by Gnielinski.

An Analysis for Predicting the Thermal Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상시 핀-관 열교환기의 열적 성능 예측을 위한 해석)

  • Lee, T.H.;Lee, K.S.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.299-306
    • /
    • 1996
  • This work presents an analytical model, so called modified LMTD method, to predict the thermal performance of finned-tube heat exchanger under frosting conditions. In this model, the total heat transfer coefficient and effective thermal conductivity of the frost layer were defined as a function of frost surface temperature. The surface temperature of the frost layer formed on the heat exchanger was calculated through the analysis of the heat and mass transfer process in the air and frost layer. To examine the validity of this analytical model, the computed results from the present model, such as heat transfer rate, frost mass and thickness of frost, were compared with the ones of the expermental work and LMED method.

  • PDF

Condensing Heat Transfer Charactristics of R-22 Alternative Refrigerants on Water Sources Heat Pump (수열원 펌프에서의 R-22 대체냉매의 응축열전달특성에 관한 연구)

  • 김기수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents an experimental study on condensing heat transfer characteristics of R-22 alternative refrigerants, R-290 and R-410a on water sources heat pump. The apparatus mainly consisted of vapor pump condenser used to the test section evaporator manual expansion valve and measuring device. Test section constructed a smoothed tube of 10.07 mm ID and 12.7mm OD with a total length 6,300 mm was horizontal double pipe counterflow condenser. The refrigerants R-22, R-290 and R-410a were cooled by a coolant circulated in a surrounding annulus. Experimental range of mass velocities was changed from about 100 to 300 kg/($m^2$.s) and inlet quality 1.0 The credibility of experimental apparatus was 6 percent between heating capacity and cooling capacity added to compressor shaft power. The condensing heat transfer coefficients were increased with increasing mass velocity. However in case of R-290 they were more increasing than those of R-410a and R-22 Comparing the heat transfer coefficient between the experimental data and other's data the Cavallini-Zecchin's data was revealed to more similar prediction of author's experimental results on the average heat transfer coefficients.

  • PDF

A study on the characteristics of heat transfer and pressure drop in plate type evaporator with U-turn for automotive air conditioner (유턴 흐름을 갖는 차량공조용 플레이트형 증발기의 전열특성에 관한 연구)

  • 강정길;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.472-483
    • /
    • 1999
  • The evaporation heat transfer and pressure drop characteristics for HFC-l34a in flat plate type heat exchangers with enhanced beads were experimentally investigated. Three plate type evaporators with different geometric condition of U-turn area were tested. Mass fluxes were tested over the range of 83kg/$m^2$s to 166kg/$m^2$s, and heat fluxes were varied from 4㎾/$m^2$ to 12㎾/$m^2$. Evaporation temperature was 5$^{\circ}C$ with inlet qualities of 0.1 to 1.0. There was no notable difference in the heat transfer coefficient by geometric variation of U-turn area, but the third plate with cross-ribbed channel at U-turn area was better than others in the evaluation using volume goodness factor comparison. Also, the mixtures of HFC-l34a and PAG oil was tested to determine oil effects on heat transfer and pressure drop. As oil concentration was increased, heat transfer coefficient was increased by 22~48% up to the 3wt.%, but decreased by 14~22% at the 4wt.%. The pressure drop was increased by the maximum of 100% as oil concentration was increased.

  • PDF

Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region (초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

A CFD ANALYSIS ON THE INFLUENCE OF OPERATING CONDITIONS AND EJECTOR CONFIGURATION ON THE HYDRODYNAMICS AND MASS TRANSFER CHARACTERISTICS OF GAS-LIQUID EJECTOR

  • Utomo, Tony;Jin, Zen-Hua;Yi, Chung-Seub;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2817-2822
    • /
    • 2007
  • The purpose of this paper is to study the influence of operating condition and ejector geometries on the hydrodynamics and on the mass transfer characteristic of ejector. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance were also carried out. Variation on the operating conditions was made by varying the gas-liquid flow rate ratio in the range of 0.2 to 1.2. The ejector configuration was also varied on the length to diameter ratio of mixing tube ($L_M/D_M$) in the range of 4 to 10. CFD studies show that at $L_M/D_M$ 5.5, the volumetric mass transfer coefficient increases with respect to gas flow rates. Meanwhile, at $L_M/D_M$ 4, the plot of volumetric mass transfer coefficient to gas-liquid flow rates ratio reach maximum at gas-liquid flow rates ratio of 0.6. This study also shows that volumetric mass transfer coefficient decrease with respect to the increase of mixing tube length.

  • PDF

Characteristics of In-Tube Condensation Heat Transfer and Pressure Drop in a Spirally-Twisted Tube and an Internally-Finned Tube (나선형비틈관과 내부핀부착관에서의 관내 응축 열전달 및 압력강하 특성)

  • 이상천;신현승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.203-211
    • /
    • 1994
  • An experiment was carried out to evaluate the heat transfer and pressure drop performances of the smooth tube and two augmented tubes using R-113 under horizontal condensation condition. The augmented tubes are a spirally-twisted tube and an internally-finned tube. The test tube is 13.88 mm in diameter and 3.2 m long. Five different inlet pressure of 0.13, 0.16, 0.18, 0.21 and 0.23 MPa were employed and the mass flux was varied from 80 to 265 $kg/m^{2}s.$ The results showed that the overall heat transfer coefficient for the spirally-twisted tube and internally-finned tube were enhanced by 30-85% and 130-180%, respectively, over that for the smooth tube. The increase in total pressure drop for the spirally-twisted tube and internally-finned tube were reached up to 250-350% and 1100-1600%, respectively, over that for the smooth tube. Correlations were proposed for predicting the condensation heat transfer coefficient for the smooth tube and two augmented tubes.

Effects of Pulsating Flow on Evaporation of Refrigerant in a Plate Heat Exchanger (판형 열교환기에서 맥동유동이 냉매의 증발에 미치는 영향)

  • Kang Byung-Ha;Jeong Il-Kwon;Kim Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.627-634
    • /
    • 2006
  • Evaporation heat transfer characteristics by pulsating flow in a plate heat exchanger have been investigated experimentally in this study. R-l34a is evaporated by receiving heat from the hot water in the plate heat exchanger. The pulsating frequency in refrigerant side of the plate heat exchanger is varied in the range of 5-25 Hz. The operating pressure of R-l34a and mass flux of hot water are also varied 0.6-0.9 MPa and $45-105 kg/m^2s$, respectively. The experimental results indicate that evaporation heat transfer coefficient of pulsating flow is improved up to 6.3% compared with that of the steady flow at 10 Hz and $G_w=45 kg/m^2s$. It is also found that the evaporation heat transfer enhancement ratio is decreased with an increase in mass flux of hot water, and the evaporation heat transfer enhancement is little influenced by operating pressure of R-l34a.

Effects of Plate Pitch and Chevron Angle in a Plate Heat Exchanger on Thermal Energy Performance (판형 열교환기의 피치 및 세브론각이 열에너지 성능에 미치는 영향)

  • Kang, Byung Ha;Han, Sang Kyu
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.3
    • /
    • pp.194-200
    • /
    • 2004
  • Thermal energy performance of a brazed plate heat exchanger has been evaluated experimentally. The effects of plate pitch as well as chevron angle of a plate heat exchanger on the heat transfer rate and pressure drop have been investigated in the wide range as mass flow rates in detail. This problem is of particular interest in the design of a plate heat exchanger. The results obtained indicate that both heat transfer rate and pressure drop are increased as mass flow rate is increased, as expected. It is also found that the heat transfer rate is increased with a decrease in the plate pitch while the heat transfer is decreased with a decrease in the chevron angle. Friction factor correlations are suggested based on the measured pressure drop and effectiveness of plate heat exchangers are also compared.