• Title/Summary/Keyword: Heat & Cooling Energy

Search Result 1,271, Processing Time 0.028 seconds

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

Heating and Cooling Performance Characteristics of Ground Source Heat Pump System Utilizing Building Structures as Heat Source and Sink (빌딩 구조체 활용 지열원 열펌프 시스템의 냉난방성능 특성)

  • Kim, Namtae;Choi, Jong Min;Sohn, Byonghu;Baek, Sung-Kwon;Lee, Dong-Chul;Yang, Hee-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.143.2-143.2
    • /
    • 2011
  • Energy foundations and other thermo-active ground structure, energy wells, energy slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and heat sink in summer season. The system represented very high heating and cooling performance due to the stability of EWT from energy slab. Maximum heat pump unit COP and system COP were 4.9 and 4.3.

  • PDF

Daily Cooling Performance Comparison of a Geothermal Heat Pump System between Energy-Pile and Energy-Slab (에너지파일과 에너지슬래브 적용 지열원 열펌프 시스템의 일일 냉방 운전 특성 비교)

  • Choi, Jong-Min;Park, Yong-Jung;Kang, Shin-Hyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.29-35
    • /
    • 2012
  • Geothermal heat pump system has been spotlighted as an efficient building energy system, because it has great potentials for reducing energy in building air conditioning and reducing $CO_2$ emissions. However, higher initial cost is a barrier to the promotion of its use. Energy-pile and energy-slab are known as low cost ground heat exchangers comparing with conventional ground heat exchangers, because they utilize building structures as ground heat exchangers. This paper presents the daily cooling performance of a geothermal heat pump system with energy-pile and energy-slab. The energy-piles and the energy-slabs are connected to heat pump units in parallel. The cooling capacity of the system was nearly constant due to the stability of the ground heat exchangers. The stability of the energy-pile was a little higher than that of the energy-stab as a heat sink.

Numerical Analysis on the Performance of a Outdoor Air Cooled Heat exchanger for Cooling Tower (외기이용 하이브리드 냉각탑 성능해석)

  • Kim, Sung-Il;Lee, Wook-Hyun;Lee, Kye-Jung;Chun, Won-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2322-2327
    • /
    • 2008
  • This paper is to provide analysis model that can be used to investigate the improvement in energy efficiency for cooling tower by using fresh air. Numerical analysis of Air-cooled heat exchanger for single-phase flow with variations of outdoor air temperature has been performed. A complete set of correlations of the heat transfer in both refrigerant and air sides was employed for predicting the heat transfer rate. The numerical results derived from the correlations were verified with experimental results. The energy consumption for a hybrid cooling tower has been compared for variation of a outdoor air temperature. The results showed that the hybrid cooling tower in low outdoor temperature offers a significant improvement in energy efficiency. The thermal analysis aids significantly in the solution of the design problem of hybrid cooling tower.

  • PDF

Heating and Cooling Performance of a Ground Coupled Heat Pump System with Energy-Slab (에너지슬래브 적용 지열원 열펌프 시스템의 성능 특성에 관한 실증 연구)

  • Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.196-203
    • /
    • 2012
  • Energy foundations and other thermo-active ground structure, energy wells, energy-slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and a heat sink in summer. The geothermal heat pump system with energy-slab represented very high heating and cooling performance due to the stability of EWT from energy slab. However, the performance of it seemed to be affected by the atmospheric air temperature.

Low-grade waste heat recovery and repurposing to reduce the load on cooling towers

  • McLean, Shannon H.;Chenier, Jeff;Muinonen, Sari;Laamanen, Corey A.;Scott, John A.
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.147-166
    • /
    • 2020
  • Industrial cooling towers are often ageing infrastructure that is expensive to maintain and operate. A novel approach is introduced in which a heat pump circuit is incorporated to reduce the load upon the towers by extracting low-grade energy from the stream sent to the towers and repurposing in on-site processing operations. To demonstrate the concept, a model was constructed, which uses industrial data on cooling towers linked to a smelter's sulphuric acid plant, to allow direct economic and environmental impact comparison between different heat recovery and repurposing scenarios. The model's results showed that implementing a heat pump system would significantly decrease annual operating costs and achieve a payback period of 3 years. In addition, overall CO2 emissions could be reduced by 42% (430,000 kg/year) and a 5% heat load reduction on the cooling towers achieved. The concept is significant as the outcomes introduce a new way for energy intensive industrial sectors, such as mineral processing, to reduce energy consumption and improve long-term sustainable performance.

The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water (콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석)

  • Baek, Nam-Choon;Jeong, Seon-Yeong;Yoon, Eung-Sang;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

Application for Heating and Cooling System Using Sewage Water (100RT급 하수열원 냉난방시스템 적용)

  • Chang, Ki-Chang;Yoon, Hyung-Kee;Park, Seong-Ryong;Baik, Young-Jin;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.215-220
    • /
    • 2006
  • Along with socioeconomic development and improving standard of living, the heat demand for heating and cooling in residential and commercial sectors is expected to expand rapidly, reaching over 43 million TOE by 2010 in Korea(about 80% increase compared with that in 1995). Since most of this heat demand is loop temperature below $60^{\circ}C$, the utilization of 'unused energy' is surely one of very effective measures to both environmental preservation and energy conservation. 'Unused energy' in this paper is implicated as 'temperature differential energy' available from treated sewage water, useful and abundant heat source for heat pump(cooler in summer and warmer in winter than outside air). An analysis was carried out to estimate the energy potential of treated sewage water for heat pump heat source. Some analysis were taken to study the characteristics of a heat pump system using the treated sewage water as heat source.

  • PDF

Heating & Cooling Energy Performance Analysis of an Office Building according to SHGC level of the Double & Triple Glazing with Low-e Coating (이중 및 삼중 로이창호의 일사획득에 따른 사무소건물의 냉난방에너지 성능분석)

  • Kim, Hyo-Joong;Park, Ja-Son;Shin, U-Cheul;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.90-95
    • /
    • 2008
  • An SHGC(Solar Heat Gain Coefficient) is a determinant of total flux of solar radiation coming indoor and a critical factor in evaluating heating and cooling load. U-value represents heat loss while SHGC denominates heat gain. Recently, windows with high solar gain, mid solar gain or low solar gain are being produced with the development of Low-E coating technology. This study evaluated changes in energy consumption for heating and cooling according to changes in SHGC when using double-layered Low-E glass and triple layered Low-E glass in relation to double layered clear glass as base glass. An Office was chosen for the evaluation. For deriving optical properties of each window, WINDOW 5 by LBNL, an U.S. based company. and the results were analyzed to evaluate performance of heat and cooling energy on anannual basis using ESP-r, an energy interpretation program. Compared to the energy consumption of the double layered clear glass, the double layered Low-E glass with high solar gain consumed $69.5kWh/m^2,yr$, 9% more than the double layered clear glass in cooling energy. The one with mid solar gain consumed $63.1kWh/m^2,yr$, 1% less than the base glass while the one with low solar gain consumed $57.6kWh/m^2,yr$, 10% less than the base glass. When it comes to tripled layered glass, the ones with high solar showed 2% of increase respectively while the one with mid solar gain and low solar gain resulted 5% and 11% in decrease in energy consumption due to low acquisition of solar radiation. With respect to cooling energy. it was found that the lower the SHGC. the less energy consumption becomes.

  • PDF

An Experimental Study on the Load Delivery Characteristics of Hybrid Energy System with Geothermal and Solar Heat Sources (지열-태양열원 복합시스템의 부하추종특성에 관한 실험 연구)

  • Hwang, In-Ju;Woo, Nam-Sub
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of the present study is to investigate the load delivery characteristics of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of a residential house in Korea. The hybrid energy system consists of ground source heat pump of 2 RT for cooling with a 150 m vertical U-bend ground heat exchanger, solar collectors of 4.8 m2 and gas fired backup boiler. The averaged coefficient of performance of geothermal module during cooling and heating seasons are evaluated as about 4.5 and 3.8, respectively.

  • PDF