• Title/Summary/Keyword: Heartbeat rate

Search Result 45, Processing Time 0.028 seconds

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

Development of Livestock Monitoring Device based on Biosensors for Preventing Livestock Diseases

  • Park, Myeong-Chul;Jung, Hyon-Chel;Ha, Ok-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.91-98
    • /
    • 2016
  • Outbreaks of highly contagious livestock diseases can cause direct and indirect economic impacts such as lower productivity of cattle farms, fall in tourism in damaged areas and countries, and decline in exports. They also incur tremendous social costs associated with disease elimination and restoration work. Thus, it is essential to prevent livestock diseases through monitoring and prediction efforts. Currently, however, it is still difficult to provide accurate predictive information regarding occurrences of livestock diseases, because existing cattle health monitoring or forecasting systems are only limited to monitor environmental conditions of livestock barns and check activities of cattle by using a pedometer or thermal image. In this paper, we present a biosensor-based cattle health monitoring system capable of collecting bio-signals of farm animals in an effective way. For the presented monitoring system, we design an integrated monitoring device consisting of a sensing module to measure bio-signals of cattle such as the heartbeat, the breath rate and the momentum, as well as a Zigbee module designed to transmit the biometric data based on Wireless Sensor Network (WSN). We verify the validity of the monitoring system by the comparison of the correlations of designed device with a commercial ECG equipment through analyzing the R-peak of measured signals.

Kami-bang-pung-tong-sung-san is Involved in Regulating Physiological Parameters Associated with Hypertension in Spontaneously Hypertensive Rat

  • Na Young Cheul;Nam Gung Uk;Lee Yang Koo;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.243-249
    • /
    • 2004
  • KBPT is the fortified prescription of Bang-pung-tong-sung-san(BPTS) by adding Spatholobi Clulis and Salviae Miltiorrzae Radix. BPTS prescription has been utilized in oriental medicine for the treatments of vascular diseases including hypertension, stroke, and arteriosclerosis. Yet, the overall mechanism underlying its activity at the cellular levels remains unknown. Using spontaneously hypertensive rat (SHR) model, we investigated whether the KBPTS has an effect on the pathophysiological parameters related to hypertension. Pretreatment of SHR with KBPTS was found to lower blood pressure and heartbeat rate. Levels of aldosterone. dopamine, and epinephrine were found to be significantly reduced in the serum of KBPTS-treated SHR. Histological examination of adrenal cortex and superior aorta showed that tissues from KBPTS-treated SHR rats were more intact and cleaner compared to saline-treated control. Levels of superoxide dismutase (SOD) protein in adrenal gland, aorta, myocardial tissue, and kidneys were higher in KBPTS-treated animals than control group. The present data suggest that KBPTS may play a role in normalizing cardiovascular function in SHR by controlling hypertension-related blood factors and superoxide stressors.

A Multilinear LDA Method of Tensor Representation for ECG Signal Based Individual Identification (심전도 신호기반 개인식별을 위한 텐서표현의 다선형 판별분석기법)

  • Lim, Won-Cheol;Kwak, Keun-Chang
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.90-98
    • /
    • 2018
  • A Multilinear LDA Method of Tensor Representation for ECG Signal Based Individual Identification Electrocardiogram signals, included in the cardiac electrical activity, are often analyzed and used for various purposes such as heart rate measurement, heartbeat rhythm test, heart abnormality diagnosis, emotion recognition and biometrics. The objective of this paper is to perform individual identification operation based on Multilinear Linear Discriminant Analysis (MLDA) with the tensor feature. The MLDA can solve dimensional aspects of classification problems in high-dimensional tensor, and correlated subspaces can be used to distinguish between different classes. In order to evaluate the performance, we used MPhysionet's MIT-BIH database. The experimental results on this database showed that the individual identification by MLDA outperformed that by PCA and LDA.

Preventive effects of sea cucumber (Apostichopus japonicus) ethanol extract on palmitate-induced vascular injury in vivo

  • Zhang, Chunying;Cha, Seon-Heui
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.90-100
    • /
    • 2022
  • Cardiovascular diseases (CVDs) have posed serious public health problems, accounting for nearly 30% of mortality worldwide and their incidence is still increasing. Therefore, new treatment resources are necessary to prevent or manage the ever-increasing population of patients with CVDs. Sea cucumber is well known for its medical and health benefit effects, but it is not well known what/how effect it has on vascular disease. In the present study, we examined the protect effect of sea cucumber, Apostichopus japonicus 80% ethanol extract (AJE) on zebrafish embryo with the stimulation of free fatty acid, palmitate (PA). In vivo study showed that AJE can attenuate PA-induced toxicity through relieving the rapid heartbeat, increasing the survival rate and reducing the malformation in both wild type and Tg (fli1a:eGFP) transgenic zebrafish lines. Additionally, compare with PA treated embryos, the yolk sac area, body length, axial vascular segment (AVS) and intersegmental vessel (ISV) of the co-treatment group of AJE and PA were comparable to the control group. Moreover, AJE lowered the expression of inducible nitric oxide synthase (iNOS), nitric oxide (NO) and inflammation-related genes induced by PA, and inhibited PA-induced vascular development disorders. Our data preliminarily verify that AJE could be a candidate resource for the prevention or therapy of CVDs.

Inhibitory Effect of Chlorine Dioxide Using Reactive Oxygen Species Against Heart Contraction of the Indianmeal Moth, Plodia interpunctella (이산화염소의 활성산소 발생에 따른 화랑곡나방 심장박동 억제 효과)

  • Kim, Chul-young;Kwon, Hyeok;Kim, Wook;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • Heart contraction is essential for insect hemolymph circulation, in which various physiological changes need control of the heart contraction. Thus, interruption of heartbeats intimidate insect survival. Chlorine dioxide induces release of reactive oxygen species (ROS), which has been regarded as the main insecticidal agent. This study analyzed the effect of chlorine dioxide on heartbeats of the Indianmeal moth, Plodia interpunctella. The larvae have the dorsal vessel on the medial dorsal region in a form of an extending tube from the first thorax to 10th abdominal segment. Dorsal vessel contraction was noticeable between 3rd and 10th abdominal segments, where five heart chambers were observed. Average heartbeat rate was 118.6 beats per min at $25^{\circ}C$. However, the heartbeats varied with ambient temperature. Injection of chlorine dioxide to hemocoel suppressed the heartbeats in a dose-dependent manner. The suppressive effect of chlorine dioxide also increased with exposure time to gas form of the chemical at 100 ppm. However, vitamin E (an antioxidant against ROS) treatment significantly rescued the larvae treated with chlorine dioxide in the heart contraction activity. These results suggest that chlorine dioxide negatively influences on the heart contraction of P. interpunctella via its production of ROS.

The Development of the Smart Sensibility Mat with Kangaroo Mother Care (캥거루 케어를 반영한 스마트 감성 매트의 개발)

  • Cho, Soo-Min
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2017
  • 'Smart Sensibility Mat (SSM)' was developed and manufactured for positive sensibility of newborn with fiber, digital, and sensibility technology to reflect features and advantages of kangaroo care. For tactile stimuli, the tube of the silicon material to provide a constant temperature of $32^{\circ}C$ was inserted into the mat and connected to the water-thermostat. To provide a uniform temperature throughout the mat, the fabric by the inserting conductive yarn was attached to the mat surface. After wrapping the mat with cotton pad, the polyurethane foam used as medicine in order to similar to the human skin was bonded to the surface of the mat. To provide the auditory stimuli of a level of 30dB with mother's heartbeat sounds and voice recorded in advance, the Bluetooth speaker was inserted into the mat. To investigate the effects of SSM, 10 newborns who born within two weeks were involved in this experiment. While the baby was lying on each of the general mat (GM) and SSM, the baby's physiological signals-heart rate, breathing rate, temperature- were measured and then, those were conducted t-test to examine the difference between the signals of SSM and GM. The results were as follows: heart rate (t=8.131, p<.001) and respiratory rate (t=7.227, p<.001) among the physiological signals of SSM decreased significantly than GM within the normal range. Temperature (t=1.062, p=0.292) at SSM showed a tendency to decrease than GM within the normal range. This means the tactile stimuli and the auditory stimuli providing from SSM give stable physiological responses. Thus, SSM leads to have psychological comfort and stability of newborns.

A Method for Motion Artifact Compensation of PPG Signal (광혈류량 신호의 움직임 훼손 보상 기법)

  • Kim, Hansol;Lee, Eui Chul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.543-549
    • /
    • 2013
  • Motion artifacts of central and autonomic nervous system signals degrades the performance of the bio-signal based human factor analysis. Firstly, we propose a defining method of motion artifact section by analyzing successive image frames. Motion artifact section is defined when the amount of motion is greater than the pre-defined threshold. In here, the amount of motion is estimated by first derivation of image frames at temporal domain. Secondly, we propose another defining method of motion artifact section through designing 2D Gaussian probability density function model by analyzing feature vectors of one cycle of signal such as length and amplitude. The defined motion artifact sections are interpolated on the basis of 1D Gaussian function. At result of applying the method into photoplethysmography signal, we confirmed that the calculated heartbeat rate from the restored photoplethysmography came up to the one from electrocardiography. Also, we found that the video based method generated relatively more false acceptance of motion artifact section and the probability density function based method generated relatively more false rejection of motion artifact section.

Effect of Kamisamul-tang on Hypertension and Free Radical (가미사물탕(加味四物湯)이 고혈압 병태 모델과 활성산소에 미치는 영향)

  • Song, Nak-Kun;Koo, Young-Sun;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1485-1496
    • /
    • 2006
  • Various kinds of related parameters on hypertension such as anti-oxygen effect, ACE, weight of body, hwart and kidney, blood pressure, heartbeat rates, contents of aldosterone, catecholamine, change rates, of plasma constituents, uric acid, BUN, creatinine were determined to verify the effects on hypertension by Kamisamul-tang (KSMT). And the results are concluded as follows. KSMT did not show any cytotoxicity at the range of concentration (1-250 ${\mu}g/m{\ell}$) on the human fibroblast cell (hFCs). KSMT decreased the production of reactive oxygen species (ROS) and DPPH generation depending on the concentration. KSMT significantly inhibited angiotensin converting enzyme(ACE) activity depending on the concentration compared with control. KSMT maintained body weight of body, heat and kidney nearly normal group in hypertensive rat induced by DOCA-salt. KSMT significantly blood pressure and heart beat rate compared with control in hypertensive rat induced by DOCA-salt. KSMT significantly decreased aldosterone, dopamine, norepineph- rine, epinephrine compared with control in hypertensive rat induced by DOCA-salt. KSMT significantly decreased the level of potassium and cloride compared with control wheareas increased that of calcium significantly in hypertensive rat induced by DOCA-salt. KSMT significantly decreased the level of uric acid and BUN compared with control in hypertensive rat induced by DOCA-salt. It is verified experimentally tat Kamisamultang(KMST) which has been used broadly as a clinical therapeutics in oriental medicine is effective for anti-hypertension mechanism. And it could be applied to develope the reliable prescriptions for anti-hypertension in the future.

A 2.4 GHz Bio-Radar System with Small Size and Improved Noise Performance Using Single Circular-Polarized Antenna and PLL (하나의 원형 편파 안테나와 PLL을 이용하여 소형이면서도 개선된 잡음 성능을 갖는 2.4 GHz 바이오 레이더 시스템)

  • Jang, Byung-Jun;Park, Jae-Hyung;Yook, Jong-Gwan;Moon, Jun-Ho;Lee, Kyoung-Joung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1325-1332
    • /
    • 2009
  • In this paper, we design a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals with small size and improved noise performance using single circular-polarized antenna and phase-locked loop. The demonstrated bio-radar system consists of single circular-polarized antenna with $90^{\circ}$ hybrid, low-noise amplifier, power amplifier, voltage-controlled oscillator with phase-locked loop circuits, quadrature demodulator and analog circuits. To realize compact size, the printed annular ring stacked microstrip antenna is integrated on the transceiver circuits, so its dimension is just $40\times40mm^2$. Also, to improve signal-to-noise-ratio performance by phase noise due to transmitter leakage signal, the phase-locked loop circuit is used. The measured results show that the heart rate and respiration accuracy was found to be very high for the distance of 50 cm without the additional digital signal processing.