• Title/Summary/Keyword: Heart fibrosis

Search Result 76, Processing Time 0.022 seconds

An Experimental Study on the Effect of Irradiation and cia- dichlorodiBmmineplatinum(II) on the myocardium of Rats (방사선조사와 cis-dichlorodismmineplstinum(II)가 휜쥐의 심근에 미치는 효과에 관한 실험적 연구)

  • Lee Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.12 no.3
    • /
    • pp.285-293
    • /
    • 1994
  • Purpose : The study was designed to investigate the effect of cis-dichlorodiammineplatinum(II)(cis-DDP) on the radiation-induced cardiomyopathy in the rat. Materials and Methods : The myocardial damage was assessed by histopathologic changes. In radiation alone group, radiation dose ranged from 10-40 Gy X-ray in a single dose and in combined group, cis-dichlorodiammineplatinum(II) at a dose of 6 mg/kg was given intraperitoneally immediately after irradiation of same dose with X-ray alone group. Results : The early changes by radiation included congestion, inflammatory cell infiltrations and fibrosis in myocardial interstitium with focal myocardial necrosis, which was noted in 10 Gy group, Myocardial fibrosis was increased by increasing dose of radiation but myocardial necrosis was not Proportional to radiation dose. cis-DDP alone group showed minimal degeneration of myocardium with surrounded by inflammatory cell infiltrations. In combined group, myocardial fibrosis in 10 Gy group were similar to radiation alone group, but 30 Gy and 40 Gy groups showed severer changes. Electron microscopic examination showed disruption of Z-band and edema of mitochondria with decreased matrix density in 20 Gy radiation group which were severer in 40 Gy radiation group. Combined group showed endothelial changes and disruption of Z-band worse than radiation alone group as well as increased connective tissue, which was considered as a hallmark of late change in radiation-induced heart disease. Conclusion : This results showed minimal enhancement of the radiation-induced cardiomyopathy in rats by cis-DDP.

  • PDF

Exercise induced Right Ventricular Fibrosis is Associated with Myocardial Damage and Inflammation

  • Rao, Zhijian;Wang, Shiqiang;Bunner, Wyatt Paul;Chang, Yun;Shi, Rengfei
    • Korean Circulation Journal
    • /
    • v.48 no.11
    • /
    • pp.1014-1024
    • /
    • 2018
  • Background and Objectives: Intense exercise (IE) induced myocardial fibrosis (MF) showed contradictory findings in human studies, making the relationship between IE and the development of MF unclear. This study aims to demonstrate exercise induced MF is associated with cardiac damage, and inflammation is essential to the development of exercise induced MF. Methods: Sprague-Dawley rats were submitted to daily 60-minutes treadmill exercise sessions at vigorous or moderate intensity, with 8-, 12-, and 16-week durations; time-matched sedentary rats served as controls. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum cardiac troponin I (cTnI) concentration. After completion of the exercise protocol rats were euthanized. Biventricular morphology, ultrastructure, and collagen deposition were then examined. Protein expression of interleukin $(IL)-1{\beta}$ and monocyte chemotactic protein (MCP)-1 was evaluated in both ventricles. Results: After IE, right but not left ventricle (LV) MF occurred. Serum cTnI levels increased and right ventricular damage was observed at the ultrastructure level in rats that were subjected to long-term IE. Leukocyte infiltration into the right ventricle (RV) rather than LV was observed after long-term IE. Long-term IE also increased protein expression of proinflammation factors including $IL-1{\beta}$ and MCP-1 in the RV. Conclusions: Right ventricular damage induced by long-term IE is pathological and the following inflammatory response is essential to the development of exercise induced MF.

Analysis of Spironolactone Use in Chronic Heart Failure

  • Park, Kyu-Won;Lee, Suk-Hyang
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.250.1-250.1
    • /
    • 2003
  • Background Aldosterone has an important role in the pathophysiology of heart failure. Aldosterone promotes the retention of sodium, the loss of magnesium and potassium, sympathetic activation, parasympathetic inhibition, myocardial and vascular fibrosis, baroreceptor dysfunction, and vascular damage and impairs arterial compliance. Objectives We investigated the effects of additional spironolactone to angiotensin-converting enzyme inhibitor (ACEI) / angiotensin-II receptor blocker (ARB) in patients with heart failure. (omitted)

  • PDF

Endothelial-specific deletion of Ets-1 attenuates Angiotensin II-induced cardiac fibrosis via suppression of endothelial-to-mesenchymal transition

  • Xu, Lian;Fu, Mengxia;Chen, Dongrui;Han, Weiqing;Ostrowski, Michael C.;Grossfeld, Paul;Gao, Pingjin;Ye, Maoqing
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.595-600
    • /
    • 2019
  • Cardiac fibrosis is a common feature in chronic hypertension patients with advanced heart failure, and endothelial-to-mesenchymal transition (EndMT) is known to promote Angiotensin II (Ang II)-mediated cardiac fibrosis. Previous studies have suggested a potential role for the transcription factor, ETS-1, in Ang II-mediated cardiac remodeling, however the mechanism are not well defined. In this study, we found that mice with endothelial Ets-1 deletion showed reduced cardiac fibrosis and hypertrophy following Ang II infusion. The reduced cardiac fibrosis was accompanied by decreased expression of fibrotic matrix genes, reduced EndMT with decreased Snail, Slug, Twist, and ZEB1 expression, as well as reduced cardiac hypertrophy and expression of hypertrophy-associated genes was observed. In vitro studies using cultured H5V cells further confirmed that ETS-1 knockdown inhibited $TGF-{\beta}1$-induced EndMT. This study revealed that deletion of endothelial Ets-1 attenuated Ang II-induced cardiac fibrosis via inhibition of EndMT, indicating an important ETS-1 function in mediating EndMT. Inhibition of ETS-1 could be a potential therapeutic strategy for treatment of heart failure secondary to chronic hypertension.

Peiminine inhibits myocardial injury and fibrosis after myocardial infarction in rats by regulating mitogen-activated protein kinase pathway

  • Chen, Peng;Zhou, Dengming;Liu, Yongsheng;Wang, Ping;Wang, Weina
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2022
  • Myocardial infarction promotes cardiac remodeling and myocardial fibrosis, thus leading to cardiac dysfunction or heart failure. Peiminine has been regarded as a traditional anti-fibrotic Chinese medicine in pulmonary fibrosis. However, the role of peiminine in myocardial infarction-induced myocardial injury and fibrosis remained elusive. Firstly, rat model of myocardial infarction was established using ligation of the left coronary artery, which were then intraperitoneally injected with 2 or 5 mg/kg peiminine once a day for 4 weeks. Echocardiography and haemodynamic evaluation results showed that peiminine treatment reduced left ventricular end-diastolic pressure, and enhanced maximum rate of increase/decrease of left ventricle pressure (± dP/dt max) and left ventricular systolic pressure, which ameliorate the cardiac function. Secondly, myocardial infarction-induced myocardial injury and infarct size were also attenuated by peiminine. Moreover, peiminine inhibited myocardial infarction-induced increase of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production, as well as the myocardial cell apoptosis, in the rats. Thirdly, peiminine also decreased the myocardial fibrosis related protein expression including collagen I and collagen III. Lastly, peiminine reduced the expression of p38 and phosphorylation of extracellular signal-regulated kinase 1/2 in rat model of myocardial infarction. In conclusion, peiminine has a cardioprotective effect against myocardial infarction-induced myocardial injury and fibrosis, which can be attributed to the inactivation of mitogen-activated protein kinase pathway.

Cardiac Behçet's Disease Presenting with Right Ventricular Endomyocardial Fibrosis and Intracardiac Thrombosis: a Case Report

  • Choi, Eun Ji;Kim, Min Sun;Koo, Hyun Jung;Song, Jae-Kwan;Song, Joo Seon;Kang, Joon-Won;Yang, Dong Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.332-337
    • /
    • 2021
  • Behçet's disease is a chronic inflammatory disorder involving vessels of various sizes and organs, including the skin, joints, gastrointestinal tract, lungs, and cardiovascular system. The etiology of Behçet's disease is unclear, and clinical diagnosis is important in the absence of definitive laboratory or pathological findings diagnostic of Behçet's disease. Cardiac involvement is rare but might present as endocarditis, myocarditis, pericarditis, or intracardiac thrombosis. This report presents a case of Behçet's disease involving the heart in a 22-year-old man with unusual manifestations of right ventricular fibrosis and intracardiac thrombosis. Cardiac magnetic resonance imaging revealed multiple intracardiac thrombi and delayed diffuse subendocardial enhancement involving the right ventricle. No peripheral eosinophilia was detected. Endomyocardial biopsy showed mixed inflammatory cell infiltrates. Based on the patient's clinical history of oral ulcer and arthritis, a diagnosis of Behçet's disease was made considering the clinical, radiological, and histological findings. Intracardiac thrombi and endomyocardial fibrosis are rare manifestations of Behçet's disease, and the diagnosis is often a clinical challenge. Early diagnosis is important for appropriate management. Behçet's disease should be considered in the differential diagnosis of patients with intracardiac thrombosis and endomyocardial fibrosis of the right chamber.

Hydrogen sulfide alleviates hypothyroidism-induced myocardial fibrosis in rats through stimulating autophagy and inhibiting TGF-β1/Smad2 pathway

  • Xiong Song;Liangui Nie;Junrong Long;Junxiong Zhao;Xing Liu;Liuyang Wang;Da Liu;Sen Wang;Shengquan Liu;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Hypothyroidism alone can lead to myocardial fibrosis and result in heart failure, but traditional hormone replacement therapy does not improve the fibrotic situation. Hydrogen sulfide (H2S), a new gas signaling molecule, possesses anti-inflammatory, antioxidant, and anti-fibrotic capabilities. Whether H2S could improve hypothyroidism-induced myocardial fibrosis are not yet studied. In our study, H2S could decrease collagen deposition in the myocardial tissue of rats caused by hypothyroidism. Furthermore, in hypothyroidism-induced rats, we found that H2S could enhance cystathionine-gamma-lyase (CSE), not cystathionine β-synthase (CBS), protein expressions. Finally, we noticed that H2S could elevate autophagy levels and inhibit the transforming growth factor-β1 (TGF-β1) signal transduction pathway. In conclusion, our experiments not only suggest that H2S could alleviate hypothyroidism-induced myocardial fibrosis by activating autophagy and suppressing TGF-β1/SMAD family member 2 (Smad 2) signal transduction pathway, but also show that it can be used as a complementary treatment to conventional hormone therapy.

Are There Hopeful Therapeutic Strategies to Regenerate the Infarcted Hearts?

  • Gyu-Chul Oh;Yeon-Jik Choi;Bong-Woo Park;Kiwon Ban;Hun-Jun Park
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.367-386
    • /
    • 2023
  • Ischemic heart disease remains the primary cause of morbidity and mortality worldwide. Despite significant advancements in pharmacological and revascularization techniques in the late 20th century, heart failure prevalence after myocardial infarction has gradually increased over the last 2 decades. After ischemic injury, pathological remodeling results in cardiomyocytes (CMs) loss and fibrosis, which leads to impaired heart function. Unfortunately, there are no clinical therapies to regenerate CMs to date, and the adult heart's limited turnover rate of CMs hinders its ability to self-regenerate. In this review, we present novel therapeutic strategies to regenerate injured myocardium, including (1) reconstruction of cardiac niche microenvironment, (2) recruitment of functional CMs by promoting their proliferation or differentiation, and (3) organizing 3-dimensional tissue construct beyond the CMs. Additionally, we highlight recent mechanistic insights that govern these strategies and identify current challenges in translating these approaches to human patients.

Surgical Management of Aortic Insufficiency in Behcet`s Syndrome - An Experience of 8 Cases - (Behcet 씨 증후군에 의한 대동맥판 폐쇄부전의 수술치험 -3례 보고-)

  • 원용순
    • Journal of Chest Surgery
    • /
    • v.21 no.5
    • /
    • pp.899-904
    • /
    • 1988
  • In Behcet syndrome, cardiac involvements are rare and have been reported pericarditis, myocarditis, right heart endocardial fibrosis, right ventricle mural thrombus with pulmonary embolism, active endocarditis, granulomatous endocarditis, conduction disturbance, acute aortic insufficiency, mitral valve prolapse. Our three patients underwent AVR because of aortic insufficiency and ascending aorta enlargement combined with Behcet syndrome. Two patients had mitral regurgitation too. So one underwent MAP and the other underwent MVR concomitantly. One who underwent AVR have been well for 50 months. Another who underwent AVR+MAP and redo AVR due to aortic paravalvular leakage was died of congestive heart failure. The other who underwent AVR+MVR and repeated AVR three times because of aortic paravalvular leakage is in condition of aortic paravalvular leakage. Paravalvular leakage is considered to recur due to progressive dilatation and fragility of aortic root that is the result of pathologic change of Behcet syndrome in it. If Open heart surgery is needed in Behcet`s syndrome during inflammatory reaction is active, postoperative complications such as paravalvular leakage or suture line rupture may be prevented with pre- and postoperative anti-inflammatory management.

  • PDF

Cardiac hypertrophy and abnormal $Ca^{2+}$ handling in transgenic mice overexpressing jnnctate

  • Hong, Chang-Soo;Cho, Myeong-Chan;Kwak, Yong-Geun;Chane, Soo-Wan;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.52-52
    • /
    • 2003
  • Junctate is a newly identified integral ER/SR membrane $Ca^{2+}$ binding protein, which is an alternative splicing form of the same gene generating aspartyl $\square$-hydroxylase and junctin. To elucidate the functional role of junctate in heart, transgenic (TG) mice overexpressing mouse cardiac junctate-1 under the control of mouse $\square$$^{~}$ myosin heavy chain promoter were generated. Overexpression of junctate in mouse heart resulted in cardiac hypertrophy, increased fibrosis, bradycardia, arrhythmias and impaired contractility. Overexpression of junctate also led to down-regulation of SERCA2, calsequestrin, calreticulin and RyR, but to up-regulation of NCX and PMCA. The SR $Ca^{2+}$ content decreased and the L-type $Ca^{2+}$ current density and the action potential durations increased in TG cardiomyocytes, which could be the cause for the bradycardia in TG heart. The present work has provided an important example of pathogenesis leading to cardiac hypertrophy and arrhythmia, which was caused by impaired $Ca^{2+}$ handling by overexpression of junctate in heart.n heart.

  • PDF