References
- Jneid H, Alam M, Virani SS, Bozkurt B. Redefining myocardial infarction: what is new in the ESC/ACCF/AHA/WHF Third Universal Definition of myocardial infarction? Methodist Debakey Cardiovasc J. 2013;9:169-172. https://doi.org/10.14797/mdcj-9-3-169
- Teringova E, Tousek P. Apoptosis in ischemic heart disease. J Transl Med. 2017;15:87. https://doi.org/10.1186/s12967-017-1191-y
- Roever L, Palandri Chagas AC. Editorial: Cardiac remodeling: new insights in physiological and pathological adaptations. Front Physiol. 2017;8:751. https://doi.org/10.3389/fphys.2017.00751
- Gajarsa JJ, Kloner RA. Left ventricular remodeling in the postinfarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev. 2011;16:13-21. https://doi.org/10.1007/s10741-010-9181-7
- Cakir B, Kilickaya O. Mitogen-activated protein kinase cascades in Vitis vinifera . Front Plant Sci. 2015;6:556.
- Qiu L, Liu X. Identification of key genes involved in myocardial infarction. Eur J Med Res. 2019;24:22. https://doi.org/10.1186/s40001-019-0381-x
- Zhang Q, Lu L, Liang T, Liu M, Wang ZL, Zhang PY. MAPK pathway regulated the cardiomyocyte apoptosis in mice with postinfarction heart failure. Bratisl Lek Listy. 2017;118:339-346.
- Matsumoto-Ida M, Takimoto Y, Aoyama T, Akao M, Takeda T, Kita T. Activation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol. 2006;290:H709-H715. https://doi.org/10.1152/ajpheart.00186.2005
- Kumphune S, Bassi R, Jacquet S, Sicard P, Clark JE, Verma S, Avkiran M, O'Keefe SJ, Marber MS. A chemical genetic approach reveals that p38alpha MAPK activation by diphosphorylation aggravates myocardial infarction and is prevented by the direct binding of SB203580. J Biol Chem. 2010;285:2968-2975. https://doi.org/10.1074/jbc.M109.079228
- Zhang Z, Zhou S, Mei Z, Zhang M. Inhibition of p38MAPK potentiates mesenchymal stem cell therapy against myocardial infarction injury in rats. Mol Med Rep. 2017;16:3489-3493. https://doi.org/10.3892/mmr.2017.6973
- Bassi R, Heads R, Marber MS, Clark JE. Targeting p38-MAPK in the ischaemic heart: kill or cure? Curr Opin Pharmacol. 2008;8:141-146. https://doi.org/10.1016/j.coph.2008.01.002
- Lyu Q, Tou F, Su H, Wu X, Chen X, Zheng Z. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death. Biochem Biophys Res Commun. 2015;462:38-45. https://doi.org/10.1016/j.bbrc.2015.04.102
- Tang Q, Wang Y, Ma L, Ding M, Li T, Nie Y, Gu Z. Peiminine serves as an adriamycin chemosensitizer in gastric cancer by modulating the EGFR/FAK pathway. Oncol Rep. 2018;39:1299-1305.
- Lim JM, Lee B, Min JH, Kim EY, Kim JH, Hong S, Kim JJ, Sohn Y, Jung HS. Effect of peiminine on DNCB-induced atopic dermatitis by inhibiting inflammatory cytokine expression in vivo and in vitro. Int Immunopharmacol. 2018;56:135-142. https://doi.org/10.1016/j.intimp.2018.01.025
- Ruan X, Yang L, Cui WX, Zhang MX, Li ZH, Liu B, Wang Q. Optimization of supercritical fluid extraction of total alkaloids, peimisine, peimine and peiminine from the bulb of Fritillaria thunbergii Miq, and evaluation of antioxidant activities of the extracts. Materials (Basel). 2016;9:524. https://doi.org/10.3390/ma9070524
- Lee B, Kim EY, Kim JH, Min JH, Jeong DW, Jun JY, Cho CY, Sohn Y, Jung HS. Antiallergic effects of peiminine through the regulation of inflammatory mediators in HMC-1 cells. Immunopharmacol Immunotoxicol. 2015;37:351-358. https://doi.org/10.3109/08923973.2015.1059441
- Chen G, Liu J, Jiang L, Ran X, He D, Li Y, Huang B, Wang W, Liu D, Fu S. Peiminine protects dopaminergic neurons from inflammation- induced cell death by inhibiting the ERK1/2 and NF-κB signalling pathways. Int J Mol Sci. 2018;19:821. https://doi.org/10.3390/ijms19030821
- Gong Q, Li Y, Ma H, Guo W, Kan X, Xu D, Liu J, Fu S. Peiminine protects against lipopolysaccharide-induced mastitis by inhibiting the AKT/NF-κB, ERK1/2 and p38 signaling pathways. Int J Mol Sci. 2018;19:2637. https://doi.org/10.3390/ijms19092637
- Guo H, Ji F, Liu B, Chen X, He J, Gong J. Peiminine ameliorates bleomycin-induced acute lung injury in rats. Mol Med Rep. 2013;7:1103-1110. https://doi.org/10.3892/mmr.2013.1312
- Soriano FG, Guido MC, Barbeiro HV, Caldini EG, Lorigados CB, Nogueira AC. Endotoxemic myocardial dysfunction: subendocardial collagen deposition related to coronary driving pressure. Shock. 2014;42:472-479. https://doi.org/10.1097/SHK.0000000000000232
- Liu JJ, Huang N, Lu Y, Zhao M, Yu XJ, Yang Y, Yang YH, Zang WJ. Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro. Sci Rep. 2015;5:17108. https://doi.org/10.1038/srep17108
- Li C, Han R, Kang L, Wang J, Gao Y, Li Y, He J, Tian J. Pirfenidone controls the feedback loop of the AT1R/p38 MAPK/renin-angiotensin system axis by regulating liver X receptor-α in myocardial infarction-induced cardiac fibrosis. Sci Rep. 2017;7:40523. https://doi.org/10.1038/srep40523
- Reichert K, Colantuono B, McCormack I, Rodrigues F, Pavlov V, Abid MR. Murine left anterior descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. J Vis Exp. 2017;(122):55353.
- Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31-47. https://doi.org/10.1016/S0008-6363(01)00434-5
- Wan N, Liu X, Zhang XJ, Zhao Y, Hu G, Wan F, Zhang R, Zhu X, Xia H, Li H. Toll-interacting protein contributes to mortality following myocardial infarction through promoting inflammation and apoptosis. Br J Pharmacol. 2015;172:3383-3396. https://doi.org/10.1111/bph.13130
- Ge J, Guo K, Zhang C, Talukder M, Lv MW, Li JY, Li JL. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-κB/IκB pathway in heart. Sci Total Environ. 2021;773:145442. https://doi.org/10.1016/j.scitotenv.2021.145442
- Fan D, Yang Z, Yuan Y, Wu QQ, Xu M, Jin YG, Tang QZ. Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food Funct. 2017;8:2875-2885. https://doi.org/10.1039/C7FO00204A
- Wang X, Guo Z, Ding Z, Mehta JL. Inflammation, autophagy, and apoptosis after myocardial infarction. J Am Heart Assoc. 2018;7:e008024. https://doi.org/10.1161/JAHA.117.008024
- Anzai T. Inflammatory mechanisms of cardiovascular remodeling. Circ J. 2018;82:629-635. https://doi.org/10.1253/circj.cj-18-0063
- Zhang X, Hu W, Feng F, Xu J, Wu F. Apelin-13 protects against myocardial infarction-induced myocardial fibrosis. Mol Med Rep. 2016;13:5262-5268. https://doi.org/10.3892/mmr.2016.5163
- Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ. Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction. J Mol Cell Cardiol. 2005;38:617-623. https://doi.org/10.1016/j.yjmcc.2005.01.012
- Zhu J, Gu H, Lv X, Yuan C, Ni P, Liu F. LINC-PINT activates the mitogen-activated protein kinase pathway to promote acute myocardial infarction by regulating miR-208a-3p. Circ J. 2018;82:2783-2792. https://doi.org/10.1253/circj.cj-18-0396
- Mitra A, Ray A, Datta R, Sengupta S, Sarkar S. Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of α-crystallin B and Nrf2. J Cell Physiol. 2014;229:1272-1282. https://doi.org/10.1002/jcp.24565