• Title/Summary/Keyword: Heart Rate Monitoring

Search Result 195, Processing Time 0.028 seconds

Systematic test on the effectiveness of MEMS nano-sensing technology in monitoring heart rate of Wushu exercise

  • Shuo Guan
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Exercise is beneficial to the body in some ways. It is vital for people who have heart problems to perform exercise according to their condition. This paper describes how an Android platform can provide early warnings of fatigue during wushu exercise using Photoplethysmography (PPG) signals. Using the data from a micro-electro-mechanical system (MEMS) gyroscope to detect heart rate, this study contributes an algorithm to determine a user's fatigue during wushu exercise. It sends vibration messages to the user's smartphone device when the heart rate exceeds the limit or is too fast during exercise. The heart rate monitoring system in the app records heart rate data in real-time while exercising. A simple pulse sensor and Android app can be used to monitor heart rate. This plug-in sensor measures heart rate based on photoplethysmography (PPG) signals during exercise. Pulse sensors can be easily inserted into the fingertip of the user. An embedded microcontroller detects the heart rate by connecting a pulse sensor transmitted via Bluetooth to the smartphone. In order to measure the impact of physical activity on heart rate, Wushu System tests are conducted using various factors, such as age, exercise speed, and duration. During testing, the Android app was found to detect heart rate with an accuracy of 95.3% and to warn the user when their heart rate rises to an abnormal level.

Basic Study for Stress Analysis Using an Unconstrained BCG Monitoring System (무구속 심탄도 모니터링 시스템을 이용한 스트레스 분석 기초연구)

  • Noh, Yun-Hong;Jeong, Do-Un
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • Heart related diseases mainly caused by heavy work load and increasing stress in human daily life. Therefore, researches on mobile healthcare monitoring for daily life has been carried out. Notably, wearable healthcare monitoring system which has least restriction has been tried to provide an emergency alert of abnormal heart rate. In this study, we developed chair type unconstrained BCG measurement system which able to perform continuous heart status monitoring at the office and daily life in the unconstrained way. Furthermore, adaptive threshold is used to detect the heart rate from BCG signals. The HRV(heart rate variability) is calculated from heart rate interval. ECG signal measured using conventional method and BCG signal measured using unconstraint system are carried out simultaneously for the purpose of performance evaluation. From the comparison result, BCG signal shows a similar heart beat characteristic as ECG signal. This proves the possibility of practical implementation of unconstraint healthcare monitoring system. In addition, medical examination like valsalva maneuver is performed to observe the changes in HRV due to stress. By performing valsalva maneuver, heart is said to be placed under an artificial physical stress condition. Under this artificial physical stress condition, the time and frequency domain of HRV parameters are evaluated.

A Non-contact Realtime Heart Rate Estimation Using IR-UWB Radar (IR-UWB 레이더를 이용한 비접촉 실시간 심박탐지)

  • Byun, Sang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.3
    • /
    • pp.123-131
    • /
    • 2019
  • In recent years, a non-contact respiration and heart rates monitoring via IR-UWB radar has been paid much attention to in various applications - patient monitoring, occupancy detection, survivor exploring in disaster area, etc. In this paper, we address a novel approach of real time heart rate estimation using IR-UWB radar. We apply sine fitting and peak detection method for estimating respiration rate and heart rate, respectively. We also deploy two techniques to mitigate the error caused by wrong estimation of respiration rate: a moving average filter and finding the frequency of the highest occurrence. Experimental results show that the algorithm can estimate heart rate in real time when respiration rate is presumed to be estimated accurately.

A Simultaneous Real-Time Heart Rate Monitoring System for Multiple Users (다수 이용자를 위한 동시적 실시간 심박수 모니터링 시스템)

  • Ha, Sangho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.8
    • /
    • pp.253-258
    • /
    • 2015
  • From the point of view of u-healthcare, heart rate is so useful for both illness for taking care of patients and wellness for improving the level of health and wellbeing. It is because heart rate is a significant clinical variable for all kinds of diseases as well as an indicator of the intensity of exercise. Recently, a number of various wearable heart rate monitors have been released to check people's status in the body by monitoring their heart rates. In addition, a number of smartphone applications have been released to conveniently monitor the status of exercise by using heart rate monitors. However, all of these applications are limited to a personal usage. In this paper, we will design a system to simultaneously monitor heart rates coming from multiple users in a real-time, and develop an Android application to apply the system. The application mainly features a simultaneous monitoring of heart rates coming from multiple users, allowing to be effectively applied to fitness centers.

Multi-channel Unconstrained Heart Rate Monitoring System for Exercising Rehabilitation Patients (재활 훈련중인 환자를 위한 다채널 무구속 심박동수 모니터링 시스템)

  • Cho, J.M.;Choi, J.H.;Park, J.H.;Nam, T.W.;Eun, J.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.191-197
    • /
    • 2008
  • This research focused on the development of wireless telemetry system that can monitor heart rates of multiple rehabilitation patients in real time without constraint. The whole system consists of the multiple patient's side devices (PSDs) and one central monitoring system (CMS). The PSD consists of a microphone, amplifier, filter, microcontroller, and RF (Radio Frequency) modem. In addition, the PSD was designed to be wearable and low power consumption. The CMS consists of an RF modem and general PC and it was designed to monitor heart rates from multiple patients simultaneously. The system warns an alarm signal when a patient's heart rate exceeds the pre-set range for each patient. This system can be useful to monitor the heart rate of exercising rehabilitation patients and control the patients condition and the exercising level.

Real-Time Heart Rate Monitoring System based on Ring-Type Pulse Oximeter Sensor

  • Park, Seung-Min;Kim, Jun-Yeup;Ko, Kwang-Eun;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.376-384
    • /
    • 2013
  • With the continuous aging of the populations in developed countries, the medical requirements of the aged are expected to increase. In this paper, a ring-type pulse oximeter finger sensor and a 24-hour ambulatory heart rate monitoring system for the aged are presented. We also demonstrate the feasibility of extracting accurate heart rate variability measurements from photoelectric plethysmography signals gathered using a ring-type pulse oximeter sensor attached to the finger. We designed the heart rate sensor using a CPU with built-in ZigBee stack for simplicity and low power consumption. We also analyzed the various distorted signals caused by motion artifacts using a FFT, and designed an algorithm using a least squares estimator to calibrate the signals for better accuracy.

Non-contact Heart Rate Monitoring using IR-UWB Radar and Lomb-Scargle Periodogram (IR-UWB 레이더와 Lomb-Scargle Periodogram을 이용한 비접촉 심박 탐지)

  • Byun, Sang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • IR-UWB radar has been regarded as the most promising technology for non-contact respiration and heartbeat monitoring because of its ability of detecting slight motion even in submillimeter range. Measuring heart rate is most challenging since the chest movement by heartbeat is quite subtle and easily interfered with by a random body motion or background noise. Additionally, periodic sampling can be limited by the performance of computer that handles the radar signals. In this paper, we deploy Lomb-Scargle periodogram method that estimates heart rate even with irregularly sampled data and uneven signal amplitude. Lomb-Scargle periodogram is known as a method for finding periodicity in irregularly-sampled and noisy data set. We also implement a motion detection scheme in order to make the heart rate estimation pause when a random motion is detected. Our scheme is implemented using Novelda's X4M03 radar development kit and its corresponding drivers and Python packages. Experimental results show that the estimation with Lomb-Scargle periodogram yield more accurate heart rate than the method of measuring peak-to-peak distance.

Glove Type Heart Rate Monitoring System Using Blood Flow Change (혈류량 변화를 이용한 장갑형 심박수 모니터링 시스템)

  • Han, Yun-Cheol;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.503-504
    • /
    • 2017
  • Recently, economic growth in the world has increased interest in healthy life, and the smart health care industry is growing. In the field of smart healthcare, wearable-type biometric information measurement technology has been highlighted due to the importance of IoT technology. The purpose of this study is to develop a wearable heart - rate monitoring system that can be applied to wearable health care and glove - type monitoring that enables convenient monitoring of heart rate during activity. For this purpose, a glove - type wearable health care system was developed and its performance was evaluated. Experimental results showed that the heartbeat monitoring was possible even in the presence of actual daily activities.

  • PDF

Development of a Modular Clothing System for User-Centered Heart Rate Monitoring based on NFC (NFC 기반 사용자 중심의 모듈형 심박측정 의류 시스템 개발)

  • Cho, Hakyung;Cho, SangWoo;Cho, Kwang Nyun
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.51-60
    • /
    • 2020
  • This study aimed to develop a modular smart clothing system for heart rate monitoring that reduces the inconvenience caused by battery charging and the large size of measurement devices. The heart rate monitoring system was modularized into a temporary device and a continuous device to enable heart rate monitoring depending on the requirement. The temporary device with near-field communication (NFC) and heart rate sensors was developed as a clothing attachment type that enables heart rate monitoring via smart phone tagging when required. The continuous device is based on Bluetooth Low Energy (BLE) communication and batteries and was developed to enable continuous heart rate measurement via a direct connection to the temporary device. Furthermore, the temporary device was configured to connect with a textile electrode made of a silver-based knitted fabric designed to be located below the pectoralis major muscle for heart rate measurement. Considering the user-experience factors, key functions, and the ease of use, we developed an application to automatically log through smart phone tagging to improve usability. To evaluate the accuracy of the heart rate measurement, we recorded the heart rate of 10 healthy male subjects with a modular smart clothing system and compared the results with the heart rate values measured by the Polar RS800. Consequently, the average heart rate value measured by the temporary system was 85.37, while that measured by the reference device was 87.03, corresponding to an accuracy of 96.73%. No significant difference was found in comparison with the reference device (T value = -1.892, p = .091). Similarly, the average heart rate measured by the continuous system was 86.00, while that measured by the reference device was 86.97, corresponding to an accuracy of 97.16%. No significant difference was found in terms of the heart rate value between the two signals (T value = 1.089, p = .304). The significance of this study is to develop and validate a modular clothing system that can measure heart rates according to the purpose of the user. The developed modular smart clothing system for heart rate monitoring enables dual product planning by reducing the price increase due to unnecessary functions.

An emergency care system for heart attack using heart rate monitoring (심박측정을 이용한 Mobile Life Keeper 시스템 구현)

  • Kim, Woojong;Lee, Suhoon;Tariq, Muhammad;Lee, Gang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.326-330
    • /
    • 2012
  • In 2011, There were about 25,000 people died because of heart disease. The aim of this paper is to design a heart attack situation monitoring and spreading system for patients. Wearable computer with a sensor is used to monitor heart rate. Heart rate is transffered to smartphone with bluetooth. After analyzing heart rate, smartphone spread out the emergency situation by various service including emergency call, SNS and SMS.

  • PDF