본 논문은 심장질환을 비침습적 방법으로 빠르고 쉽게 진단할 수 있도록 심음을 이용하는 방법에 대한 가능성을 찾는 것이다. 일반적으로 심음의 분류를 위하여 심음을 분리한 후에 특징파라미터를 추출하는 과정을 거치지 않고, 심음 분리에 사용되는 Shannon 엔트로피로 정규화하여 신경회로망의 입력으로 사용하였다. 심장질환에 따른 심잡음 분류를 위하여 Scaled conjugate gradient 역전파 알고리즘을 이용하여 신경회로망 분류기를 구현하였다. 정상 심음과 심장 질환의 경우 5가지를 포함하여 6종류의 심잡음에 대하여 분류가 가능함을 확인하였다.
본 논문에서는 심음신호를 이용해 강한 심 잡음이 나타나는 심장판막협착 영역을 검출하는 새로운 알고리듬을 제안하였다. 심음의 주성분을 찾거나 심 잡음을 제거하기 위한 지금까지의 많은 연구들은 대동맥판막협착증이나 승모판막협착증과 같이 강한 심 잡음이 나타나는 비정상 심음의 경우, 강한 심 잡음으로 인해 좋은 결과를 보이지 못하였다. 본 논문에서는 구간 잡음강도함수를 이용한 잡음 검출 알고리듬을 제안하였다. 제안한 구간 잡음 강도 함수는 심음 신호에서 제 1심음과 제 2심음을 검출하여, 이를 이용한 심음 구간을 설정한 후 구간 자기상관변화량을 이용하여 도출할 수 있다. 제안한 구간 잡음강도함수를 이용하여 심 잡음의 강도를 판단하고 심 잡음 유무를 검출하였다. 제안한 알고리듬으로 실험한 결과, 심장판막협착 영역 검출에서 기존의 연구보다 뛰어난 성능을 가지는 것을 확인하였다.
Heart sounds generated by the beating heart and blood flow reflect the turbulence created when the heart valves snap shut. Cardiac diagnosis is typically started by an auscultation using a stethoscope, from which a medical doctor, depending on his hearing capabilities and training, listens and interprets the acoustic signal. This method of diagnostic is uncertain, mostly due to the fact that human ear loses the acoustic frequency sensitivity through the years. Even though an auscultation has some weaknesses like uncertainty, it is considered as a primary tool due to its simplicity. In this paper, heart murmur detection algorithm is proposed using time and frequency characteristics of heart sound. The propose heart murmur detection method adapted conventional primary heart sound detection method in time domain and modified spectral flatness method in frequency domain for detecting heart murmurs. From experimental results, it is confirmed that the proposed algorithm detect the heart murmurs efficiently.
본 논문에서는 심음에서 제 1심음(S1)과 제 2심음(S2)을 찾기 위한 새로운 알고리듬을 제안하였다. 심음의 주성분을 찾기 위한 기존의 알고리듬들은 심 잡음이 없는 정상 심음 신호에서는 높은 성능을 보이지만 심 질환에 의해 발생하는 심 잡음이 섞여 있는 신호에서는 현저한 성능저하를 보인다. 따라서 본 논문에서는 심 질환이 있는 심음에서 제 1심음과 제 2심음의 검출 성능 향상을 위해 3차 샤논 에너지 변화량을 이용한 알고리듬을 제안하였다. 제 1심음과 제 2심음의 에너지 변화량이 심 잡음에 비해 더 크게 나타나는 특징을 이용하여, 심 잡음을 감쇄시키고 제 1심음, 제 2심음을 검출하였다. 제안한 알고리듬은 정상 심음 뿐 아니라 대동맥 협착증, 승모판막 협착증과 같은 비정상 심음에서도 높은 검출 성능을 가질 수 있도록 개발하였으며 실험 결과 기존의 검출방법에 비하여 높은 검출 성능을 보였다.
심음도(PCG, Phonocardiogram) 분석을 이용하여 심장의 판막과 관련된 질환을 진단하기 위해서는 먼저 심음 분할을 위해 심음의 주성분인 S1과 S2를 정확하게 찾아야 한다. 본 논문에서는 심음포락선의 모멘트 특성을 분석하고 이를 심음 분할에 적용하였다. 기존의 2차 모멘트를 이용한 심음 분할의 문제점을 분석하고, 심잡음이 있더라도 심음 주성분의 검출이 용이한 3차 모멘트에 기반한 방법을 제안하였다. 심음포락선은 심음 신호의 단구간 에너지를 이용하였으며, 3차 모멘트 궤적의 기울기 정보를 이용하여 심음 주성분을 검출하고 지속시간을 게이팅(gating) 하였다. 다양한 심잡음이 포함된 심음 신호에 대한 실험을 통해 제안한 방법이 기존의 2차 모멘트 기법보다 심잡음의 영향을 적게 받고 심음 주성분의 구간을 정확하게 검출 할 수 있음을 보였다.
This paper presents the application of the wavelet transform analysis and the neural network method to the phonocardiogram (PCG) signal. Heart sound is a acoustic signal generated by cardiac valves, myocardium and blood flow and is a very complex and nonstationary signal composed of many source. Heart sound can be discriminated normal heart sound and heart murmur. Murmurs have broader frequency bandwidth than the normal ones and can occur at random position of cardiac cycle. In this paper, we classified the group of heart sound as normal heart sound(NO), pre-systolic murmur(PS), early systolic murmur(ES), late systolic murmur(LS), early diastolic murmur(ED). And we used the wavelet transform to shorten artifacts and strengthen the low level signal. The ANN system was trained and tested with the back- propagation algorithm from a large data set of examples-normal and abnormal signals classified by expert. The best ANN configuration occurred with 15 hidden layer neurons. We can get the accuracy of 85.6% by using the proposed algorithm.
심음은 가장 쉽게 추출, 보관이 가능하고 가장 빨리 심장 질환을 진단하는데 도움을 줄 수 있기에 많이 사용되고 있다. 심음은 청진, 전자 청진을 통하여 얻어지는데 질환의 판정을 위해서는 전문의 많은 경험에 의존하고 있고, 자동 진단을 위한 장비는 매우 고가이며, 이를 위하여 심음의 정량화 과정이 선행되어야 한다. 본 연구에서는 심음의 한 종류인 심잡음을 심장 질환 별로 추출하여 정량화하여 자동 진단에 도움을 주고자 하였다. 심잡음은 심잡음 에너지율을 계산하여 정량화에 이용하였다. 추출된 심잡음 에너지의 파워 스펙트럼은 심장 질환별로 분류 가능한 형태학적 특징을 나타내었다.
Park, Chul;Yoo, Jong-Hyun;Jung, Dong-In;Kim, Ju-Won;Kang, Byeong-Teck;Park, Hee-Myung
대한수의학회지
/
제47권1호
/
pp.99-102
/
2007
A 3-year-old, intact female, Shih-tzu dog was presented with a 15-day history of vomiting,depression, and anorexia. On physical examination, systolic ejection murmurs with precordial thril atthe left heart base were detected. A diagnosis of congenital pulmonic stenosis (PS) was made mainlyfrom the thoracic radiography, electrocardiography, and echocardiography. On complete blood counts andconfirmed that main pulmonary artery was tremendously buldged and electrocardiography was suggestiveof severe right ventricular hypertrophy. Echocardiographic findings revealed the pulmonic valve stenosiscontaining valvular dysplasia and poststenotic dilation. On Doppler echocardiography, ejection velocityof the lesion accounted for 3.38 m/sec, meaning mild velocity through the stenotic area. The dog'sproblem and resulted in death. However, there has been no reliable relation between PS and CRF. Primarymalformation of pulmonic valve was confirmed at necropsy after death.
본 논문은 자동 분할과 extreme learning machine (ELM)을 이용하여 연속 심음신호에 의한 심장질환 분류의 성능을 개선한다. 자동 분할을 위한 전처리 단계에서 비정상적인 심음신호는 심잡음 (murmur)과 클릭음 (click)을 포함하고 있기 때문에 제1음 (S1)과 제2음 (S2) 시작점 검출 결과가 부정확하거나 누락되어 기존의 심장질환 분류 시스템의 정확도를 저하시키게된다. 이러한 분할 오류에 의한 성능 저하를 감소하기 위해 S1 및 S2의 위치를 찾고, S1 및 S2의 시간 차이를 이용하여 부정확한 시작점을 교정한 다음 한 주기 심음 신호를 추출한다. 특징벡터로는 단일 주기의 심음 신호로부터 추출된 멜척도 필터뱅크 로그 에너지 계수와 포락선을 사용한다. 심장질환을 분류하기 위하여 한 개의 은닉층을 가진 ELM 알고리듬을 사용한다. 9가지 심장질환 분류 실험을 수행한 결과, 제안 방법은 81.6%의 분류 정확도를 나타내며, multi-layer perceptron(MLP), support vector machine (SVM), hidden Markov model (HMM) 중에서 가장 높은 분류 정확도를 보여준다.
A clinical analysis was performed n 706 uses of patent ductus arteriosus experienced at Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital during 27 years period from 1958 to 1984. Of the 706 patients of PDA, 244 patients were male and 462 patients were female and ages ranged from 2 months to 53 years old with the average age of 8.5 years. The chief complaints on admission were dyspnea on exertion and frequent URI in 58.9%, non specific symptoms such as palpitation and easy fatigability in 9.7%, symptoms of CHF in 2.0% and no subjective symptoms in 29.4%. On auscultation of heart, continuous machinery murmurs were heard in 82% and only systolic murmurs were heard in 18% of patients. On simple chest PA of patients, cardiomegalies were detected in 78% and there were increased pulmonary vascularities in 93% of patients. EKG findings were as followed; LVH 56.9%, BVH 12.6%, RVH 2.9% and WNL 27.6%. Cardiac Catheterizations were performed in 512 patients and mean Qp/Qs was 2.56 and mean systolic pulmonary artery pressure was 45mmHg. Operation methods were as followed; in patients in whom operations were performed on PDA only, ligation 94.3%, division 3.7% and ligation [0.5%] or trans-pulmonary artery suture closure [1.5%] under cardiopulmonary bypass 2.0% and in patients in whom operations were performed with associated anomalies, ligation 17.6%, division 2.4%, and ligation [44.7%] or trans-pulmonary artery suture closure [35.3%] under cardiopulmonary bypass 80%. 52 postoperative complications [8.4%] were developed in 42 patients [6.8%] and its were as followed; permanent or transient hoarseness 16 [2.6%], intraoperative rupture of PDA 8 [1.3%], recannalization 6 [1.[%], operative death 5 [0.8%], late death 4 [0.6%] and other miscellaneous complications 13 [2.1%]. 140 associated cardiac anomalies [19.8%] were found in 105 patients [14.9%] and its were as followed; VSD 68 [9.6%], COA 15 [2.1%], Subaortic discrete membrane 7 [0.9%], ASD 6 [0.8%], TOF 5 [0.7%] and other miscellaneous and
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.