• 제목/요약/키워드: Hearing loss simulator

검색결과 6건 처리시간 0.022초

난청인의 주파수 선택도와 비대칭적 청각 필터를 고려한 난청 시뮬레이터 개발에 관한 연구 (A Study on Development of a Hearing Impairment Simulator considering Frequency Selectivity and Asymmetrical Auditory Filter of the Hearing Impaired)

  • 주상익;강현덕;송영록;이상민
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.831-840
    • /
    • 2010
  • In this paper, we propose a hearing impairment simulator considering reduced frequency selectivity and asymmetrical auditory filter of the hearing impaired, and we verified the reduced frequency selectivity and asymmetrical auditory filter affected in speech perception through experiments. The reduced frequency selectivity has made embodied by spectral smearing using LPC(linear prediction coding). The shapes of auditory filter are asymmetrical different with each center frequency. Hearing impaired person which has hearing loss was differently changed with that of normal hearing people and it has different value for speech of quality through auditory filter. The experiments confirmed subjective test and objective test. The subjective experiments are composed of 4 kinds of tests: pure tone test, SRT(speech reception threshold) test, and WRS(word recognition score) test without spectral smearing, and WRS test with spectral smearing. The experiment of the hearing impairment simulator was performed from 9 subjects who have normal ears. The amount of spectral smearing was controlled by LPC order. The asymmetrical auditory filter of proposed hearing impairment simulator was simulated and then some tests to estimate the filter's performance objectively were performed. The objective experiment as simulated auditory filter's performance evaluation method used PESQ(perceptual evaluation of speech quality) and LLR(log likelihood ratio) for speech through auditory filter. The processed speech was evaluated objective speech quality and distortion using PESQ and LLR value. When hearing loss processed, PESQ and LLR value have big difference according to asymmetrical auditory filter in hearing impairment simulator.

디지털 보청기 사용자를 위한 압신 알고리즘의 성능 연구 (A Study on the Performance of Companding Algorithms for Digital Hearing Aid Users)

  • 황윤수;한종희;지윤상;홍성화;이상민;김동욱;김인영;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.218-229
    • /
    • 2011
  • Companding algorithms have been used to enhance speech recognition in noise for cochlea implant users. The efficiency of using companding for digital hearing aid users is not yet validated. The purpose of this study is to evaluate the performance of the companding for digital hearing aid users in the various hearing loss cases. Using HeLPS, a hearing loss simulator, two different sensorinerual hearing loss conditions were simulated; mild gently sloping hearing loss(HL1) and moderate to steeply sloping hearing loss(HL2). In addition, a non-linear compression was simulated to compensate for hearing loss using national acoustic laboratories-non-linear version 1(NAL-NL1) in HeLPS. In companding, the following four different companding strategies were used changing Q values(q1, q2) of pre-filter(F filter) and post filter(G filter). Firstly, five IEEE sentences which were presented with speech-shaped noise at different SNRs(0, 5, 10, 15 dB) were processed by the companding. Secondly, the processed signals were applied to HeLPS. For comparison, signals which were not processed by companding were also applied to HeLPS. For the processed signals, log-likelihood ratio(LLR) and cepstral distance(CEP) were measured for evaluation of speech quality. Also, fourteen normal hearing listeners performed speech reception threshold(SRT) test for evaluation of speech intelligibility. As a result of this study, the processed signals with the companding and NAL-NL1 have performed better than that with only NAL-NL1 in the sensorineural hearing loss conditions. Moreover, the higher ratio of Q values showed better scores in LLR and CEP. In the SRT test, the processed signals with companding(SRT = -13.33 dB SPL) showed significantly better speech perception in noise than those processed using only NAL-NL1(SRT = -11.56 dB SPL).

디지털 보청기에서의 NAL-NL1 기반 한국형 비선형 fitting formula 연구 (A Study of Korean Non-linear Fitting Formula based on NAL-NL1 for Digital Hearing Aids)

  • 김혜미;이상민
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권2호
    • /
    • pp.169-178
    • /
    • 2009
  • In this study, we suggest Korean nonlinear fitting formula (KNFF) to maximize speech intelligibility for digital hearing aids based on NAL-NL1 (NAL-nonlinear, version 1). KNFF was derived from the same procedure which is used for deriving NAL-NL1. KNFF consider the long-term average speech spectrum of Korean instead of English because the frequency characteristic of Korean is different from that of English. New insertion gains of KNFF were derived using the SII (speech intelligibility index) program provided by ANSI. In addition, the insertion gains were modified to maximize the intelligibility of high frequency words. To verify effect of the new fitting gain, we performed speech discrimination test (SDT) and preference test using the hearing loss simulator from NOISH. In the SDT, a word set as test material consists of 50 1-syllable word generally used in hearing clinic. As a result of the test, in case of moderate hearing loss with severe loss on high frequency, the SDT scores of KNFF was more improved about 3.2% than NAL-NLl and about 6% in case of the sever hearing loss. Finally we have obtained the result that it was the effective way to increase gain of mid-high frequency bands and to decrease gain of low frequency bands in order to maximize speech intelligibility of Korean.

지능형 자동차의 안전 경고음에 대한 고령운전자의 반응 특성 (Age-related Deficits in Response Characteristics on Safety Warning of Intelligent Vehicle)

  • 김만호;이용태;손준우;장치환
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.131-137
    • /
    • 2009
  • Recent technological advances made a vehicle more intelligent to increase safety and comfort. An intelligent vehicle provides drivers with safety warning information through audible sounds, visual displays, and tactile devices. However, elderly drivers have been known to decrease the physical and cognitive abilities such as muscular strength, hearing, eyesight, short term memory, and spatial perception. Therefore, possible age-related deficits should be considered to design an effective warning system. This paper aims to evaluate the impact of advancing age on response performance on audible safety warnings which are widely used for alerting driving hazards. In order to understand the effect of age-related hearing loss and movement slowing, three sound characteristics (frequency, intensity, and period) and three age groups (younger, middle, and older) are considered. Data was drawn from 38 drivers who drove a simulated rural road in a driving simulator. Experimental results show that age influences driver's response performance. In conclusion, the appropriate range of a warning sound is suggested.

음향도구 착용 근로자의 소음노출 실태에 관한 연구 (Research on the characteristics of noise exposure on worker wearing acoustic devices)

  • 김갑배;유계묵;이인섭;정광재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.808-813
    • /
    • 2011
  • There are hundreds of thousands call center workers wearing acoustic device. However, researches and noise exposure measurements on the noise transmitted from acoustic devices have seldom been performed due to the difficulty of measurement and to the absence of the measuring method in Korea. The aim of this study is to set up management measures to protect hearing loss on the call operator by acquiring measurement data of noise transmitted from the headset Noise exposure measurements of 17 operators were performed in 7 call centers and Head and Torso Simulator method in compliance with the ISO Standard 11904-2 was used for the measurement of noise transmitted from the headset Sound pressure levels(SPL) transmitted from the headset were 73.2~86 dB(A). The operator exposed to the highest SPL set up his volume control at 9 which was the highest volume level. The volume control level, adjustable from 1 to 9, could be identified 12 out of 17 operators and the range of volume levels was 4.5~9. As a result of Pearson Correlation Analysis, the correlation between volume level and SPL transmitted from the headset showed high relation as significance at the 0.672 level(p<0.05). To protect hearing loss of call center operators, it is more practical and effective measure to limit the volume level below the noise exposure level, i.e. 85 dB(A), rather than to carry out noise monitoring considering cost-effective aspect.

  • PDF

음향도구 착용 근로자의 소음노출 실태에 관한 연구 (Research on the Characteristics and Measures of Noise Exposure on Worker Wearing Acoustic Devices)

  • 김갑배;유계묵;이인섭;정광재
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.615-621
    • /
    • 2011
  • There are hundreds of thousands call center workers wearing acoustic device. However, researches and noise exposure measurements on the noise transmitted from acoustic devices have seldom been performed due to the difficulty of measurement and to the absence of the measuring method in Korea. The aim of this study is to set up management measures to protect hearing loss on the call operator by acquiring measurement data of noise transmitted from the headset. Noise exposure measurements of 17 operators were performed in 7 call centers and head and Torso simulator method in compliance with the ISO standard 11904-2 was used for the measurement of noise transmitted from the headset. Sound pressure levels(SPL) transmitted from the headset were 73.2~86 dB(A). The operator exposed to the highest SPL set up his volume control at 9 which was the highest volume level. The volume control level, adjustable from 1 to 9, could be identified 12 out of 17 operators and the range of volume levels was 4.5~9. As a result of pearson correlation analysis, the correlation between volume level and SPL transmitted from the headset showed high relation as significance at the 0.672 level(p<0.05). To protect hearing loss of call center operators, it is more practical and effective measure to limit the volume level below the noise exposure level, i.e. 85 dB(A), rather than to carry out noise monitoring considering cost-effective aspect.