• Title/Summary/Keyword: Heap Pump

Search Result 5, Processing Time 0.019 seconds

Research on the structure design of the LBE reactor coolant pump in the lead base heap

  • Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Wang, Xiuli;An, Ce;Chen, Jing
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.546-555
    • /
    • 2019
  • Since the first nuclear reactor first critical, nuclear systems has gone through four generations of history, and the fourth generation nuclear system will be truly realized in the near future. The notions of SVBR and lead-bismuth eutectic alloy coolant put forward by Russia were well received by the international nuclear science community. Lead-bismuth eutectic alloy with the ability of the better neutron economy, the low melting point, the high boiling point, the chemical inertness to water and air and other features, which was considered the most promising coolant for the 4th generation nuclear reactors. This study mainly focuses on the structural design optimization of the 4th-generation reactor coolant pump, including analysis of external characteristics, inner flow, and transient characteristic. It was found that: the reactor coolant pump with a central symmetrical dual-outlet volute structure has better radial-direction balance, the pump without guide vane has better hydraulic performance, and the pump with guide vanes has worse torsional vibration and pressure pulsation. This study serves as experience accumulation and technical support for the development of the 4th generation nuclear energy system.

Development of a Real-Time Steady State Detector of a Heat Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장진단시스템 구축을 위한 정상상태 진단기 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2070-2075
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF

Real-time steady state identification technology of a heat pump system to develop fault detection and diagnosis system (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.282-287
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF

Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2010
  • Identification of a steady state is the first step in developing a fault detection and diagnosis (FDD) system of a heat pump. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm, which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representative measurements were selected as key features for steady-state detection. The optimized moving-window size and the feature thresholds were decided on the basis of a startup-transient test and no-fault steady-state test. Performance of the steady-state detector was verified during an indoor load-change test. In this study, a general methodology for designing a moving-window steady-state detector for applications involving vapor compression has been established.

Statistical Analysis on Residuals from No-Fault Reference Models of a Residential Heat Pump System in Normal Cooling Operation (가정용 열펌프 시스템의 정상냉방 운전조건에서 기준모델에 의한 잔차의 통계적 분석)

  • Kim, Min-Sung;Yoon, Seok-Ho;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1351-1358
    • /
    • 2011
  • To approximate the threshold of the fault detection and diagnosis (FDD) system, validation of the measurements is mandatory. Naturally, the system shows uncertainties due to measuring sensors - mostly thermocouples or RTDs - and due to repeatability. The uncertainty of a thermocouple comes from natural variation or a drift of the thermocouple measurement. Considering the natural variation behaves like zero-mean white noise, its natural variation can be characterized closely by the steady-state standard deviation. However, residuals between measurements and no-fault references in FDD systems show a statistical distribution with various uncertainties. In this paper, steady-state variations of measurement residuals were investigated by utilizing built-in temperature sensors in a heat pump for the model development and the final application.