• Title/Summary/Keyword: Healthcare bigdata

Search Result 25, Processing Time 0.027 seconds

Analysis of the propensity of medical expenses for auto insurance patients by type of medical institution (의료기관 종류별 자동차보험 환자의 진료비 성향 분석)

  • Ha, Au-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.2
    • /
    • pp.184-191
    • /
    • 2022
  • This study aims to provide basic information necessary to find an efficient management plan for patients using auto insurance. The analysis was conducted on the five-year auto insurance medical expenses review data registered in the health care bigdata Hub from 2016 to 2020. As a result of the analysis, the number one composition ratio of auto insurance inpatient treatment expenses was treatment and surgery fees for Certified tertiary hospitals, hospitalization fees for general hospitals, hospitals and clinics, and treatment and surgery fees for oriental medical institutions and dental hospitals. outpatient treatment expenses was doctor's fee for medical institution, treatment and surgery fees for oriental medical institutions and dental hospitals. The ratio of medication, anesthesia, and special equipment significantly affected the cost of inpatient. And the ratio of physical therapy significantly affected the cost of outpatient.

Factors influencing metabolic syndrome perception and exercising behaviors in Korean adults: Data mining approach (대사증후군의 인지와 신체활동 실천에 영향을 미치는 요인: 데이터 마이닝 접근)

  • Lee, Soo-Kyoung;Moon, Mikyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.581-588
    • /
    • 2017
  • This study was conducted to determine which factors would predict metabolic syndrome (MetS) perception and exercise by applying a machine learning classifier, or Extreme Gradient Boosting algorithm (XGBoost) from July 2014 to December 2015. Data were obtained from the Korean Community Health Survey (KCHS), representing different community-dwelling Korean adults 19 years and older, from 2009 to 2013. The dataset includes 370,430 adults. Outcomes were categorized as follows based on the perception of MetS and physical activity (PA): Stage 1 (no perception, no PA), Stage 2 (perception, no PA), and Stage 3 (perception, PA). Features common to all questionnaires for the last 5 years were selected for modeling. Overall, there were 161 features, categorical except for age and the visual analogue scale (EQ-VAS). We used the Extreme Boosting algorithm in R programming for a model to predict factors and achieved prediction accuracy in 0.735 submissions. The top 10 predictive factors in Stage 3 were: age, education level, attempt to control weight, EQ mobility, nutrition label checks, private health insurance, EQ-5D usual activities, anti-smoking advertising, EQ-VAS, education in health centers for diabetes, and dental care. In conclusion, the results showed that XGBoost can be used to identify factors influencing disease prevention and management using healthcare bigdata.

Establishment of the large-scale longitudinal multi-omics dataset in COVID-19 patients: data profile and biospecimen

  • Jo, Hye-Yeong;Kim, Sang Cheol;Ahn, Do-hwan;Lee, Siyoung;Chang, Se-Hyun;Jung, So-Young;Kim, Young-Jin;Kim, Eugene;Kim, Jung-Eun;Kim, Yeon-Sook;Park, Woong-Yang;Cho, Nam-Hyuk;Park, Donghyun;Lee, Ju-Hee;Park, Hyun-Young
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.465-471
    • /
    • 2022
  • Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of large-scale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.

Healthcare service analysis using big data

  • Park, Arum;Song, Jaemin;Lee, Sae Bom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.149-156
    • /
    • 2020
  • In the Fourth Industrial Revolution, successful cases using big data in various industries are reported. This paper examines cases that successfully use big data in the medical industry to develop the service and draws implications in value that big data create. The related work introduces big data technology in the medical field and cases of eight innovative service in the big data service are explained. In the introduction, the overall structure of the study is mentioned by describing the background and direction of this study. In the literature study, we explain the definition and concept of big data, and the use of big data in the medical industry. Next, this study describes the several cases, such as technologies using national health information and personal genetic information for the study of diseases, personal health services using personal biometric information, use of medical data for efficiency of business processes, and medical big data for the development of new medicines. In the conclusion, we intend to provide direction for the academic and business implications of this study, as well as how the results of the study can help the domestic medical industry.

SUBSIDY ESTIMATION FOR INDUCING OPENING OF DENTAL HOSPITAL OR CLINIC FOR THE DISABLED (장애인 치과 병·의원 개원 유도를 위한 적절한 보조금 산정에 대한 연구)

  • Song, Changmok;Hyun, Hong-Keun;Shin, Teo Jeon;Kim, Young-Jae
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.12 no.2
    • /
    • pp.55-65
    • /
    • 2016
  • The objective of this study was to estimate the proper amount of subsidy required to operating dental hospital or clinic for the disabled. Models for estimating operating profit of general dental hospital/clinic and opportunity cost of operating dental hospital/clinic for the disabled was formulated. Data were collected from various sources such as the annual reports of Purme Hospital, one of the running dental hospitals for the disabled, statistics from Healthcare Bigdata Hub, operated by Health Insurance Review & Assessment Service of Korean Government, and the deliberation data of non-reimbursable treatments in Seoul Dental Hospital for the Disabled. A dental hospital/clinic for the disabled was less profitable than a general dental hospital/clinic, of which the reason is that the chair time for the average patient is longer. However, It was false that a dental hospital/clinic for the disabled scored less average insurance fee for a treatment. Disabled patients had more frequent prosthodontic treatments, which had a high average insurance fee. There were some groups of treatments that could yield higher profitability in a dental hospital/clinic for the disabled; recall checks, and periodontal treatments.

Building Linked Big Data for Stroke in Korea: Linkage of Stroke Registry and National Health Insurance Claims Data

  • Kim, Tae Jung;Lee, Ji Sung;Kim, Ji-Woo;Oh, Mi Sun;Mo, Heejung;Lee, Chan-Hyuk;Jeong, Han-Young;Jung, Keun-Hwa;Lim, Jae-Sung;Ko, Sang-Bae;Yu, Kyung-Ho;Lee, Byung-Chul;Yoon, Byung-Woo
    • Journal of Korean Medical Science
    • /
    • v.33 no.53
    • /
    • pp.343.1-343.8
    • /
    • 2018
  • Background: Linkage of public healthcare data is useful in stroke research because patients may visit different sectors of the health system before, during, and after stroke. Therefore, we aimed to establish high-quality big data on stroke in Korea by linking acute stroke registry and national health claim databases. Methods: Acute stroke patients (n = 65,311) with claim data suitable for linkage were included in the Clinical Research Center for Stroke (CRCS) registry during 2006-2014. We linked the CRCS registry with national health claim databases in the Health Insurance Review and Assessment Service (HIRA). Linkage was performed using 6 common variables: birth date, gender, provider identification, receiving year and number, and statement serial number in the benefit claim statement. For matched records, linkage accuracy was evaluated using differences between hospital visiting date in the CRCS registry and the commencement date for health insurance care in HIRA. Results: Of 65,311 CRCS cases, 64,634 were matched to HIRA cases (match rate, 99.0%). The proportion of true matches was 94.4% (n = 61,017) in the matched data. Among true matches (mean age 66.4 years; men 58.4%), the median National Institutes of Health Stroke Scale score was 3 (interquartile range 1-7). When comparing baseline characteristics between true matches and false matches, no substantial difference was observed for any variable. Conclusion: We could establish big data on stroke by linking CRCS registry and HIRA records, using claims data without personal identifiers. We plan to conduct national stroke research and improve stroke care using the linked big database.

Analysis on Big data, IoT, Artificial intelligence using Keyword Network (빅데이터, IoT, 인공지능 키워드 네트워크 분석)

  • Koo, Young-Duk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1137-1144
    • /
    • 2020
  • This paper aims to provide strategic suggestions by analyzing technology trends related to big data, IoT, and artificial intelligence. To this end, analysis was performed using the 2018 national R&D information, and major basic analysis and language network analysis were performed. As a result of the analysis, research and development related to big data, IoT, and artificial intelligence are being conducted by focusing on the basic and development stages, and it was found that universities and SMEs have a high proportion. In addition, as a result of the language network analysis, it is judged that the related fields are mainly research for use in the smart farm and healthcare fields. Based on these research results, first, big data is essential to use artificial intelligence, and personal identification research should be conducted more actively. Second, they argued that full-cycle support is needed for technology commercialization, not simple R&D activities, and the need to expand application fields.

An Open Medical Platform to Share Source Code and Various Pre-Trained Weights for Models to Use in Deep Learning Research

  • Sungchul Kim;Sungman Cho;Kyungjin Cho;Jiyeon Seo;Yujin Nam;Jooyoung Park;Kyuri Kim;Daeun Kim;Jeongeun Hwang;Jihye Yun;Miso Jang;Hyunna Lee;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.2073-2081
    • /
    • 2021
  • Deep learning-based applications have great potential to enhance the quality of medical services. The power of deep learning depends on open databases and innovation. Radiologists can act as important mediators between deep learning and medicine by simultaneously playing pioneering and gatekeeping roles. The application of deep learning technology in medicine is sometimes restricted by ethical or legal issues, including patient privacy and confidentiality, data ownership, and limitations in patient agreement. In this paper, we present an open platform, MI2RLNet, for sharing source code and various pre-trained weights for models to use in downstream tasks, including education, application, and transfer learning, to encourage deep learning research in radiology. In addition, we describe how to use this open platform in the GitHub environment. Our source code and models may contribute to further deep learning research in radiology, which may facilitate applications in medicine and healthcare, especially in medical imaging, in the near future. All code is available at https://github.com/mi2rl/MI2RLNet.

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.