This study was carried out to investigate the relationship between social support, social network and health behaviors as surveyed by cross-sectional study in 744 rural people aged above 30 of a community dwelling sample of one county for 6 days of July in 2000. Objectives of this study was in order to establish an effective health promotion. The sample was accrued by face to face interview of direct visiting from clustered sampling method. Interview was conducted by trained medical students with the questionnaire consisted of socio-demographic data, health behavior, social support and social network based on previous literature. The summarized results were as follows: 1. There were significant difference in the level of social support and social network by general characteristic variables except occupation and residency type(p〈0.05). 2. There were significant difference in knowledge about hypertension, smoking status, status of physical exercise, diet patterns by social support and social network in spite of variation of social support and social network subconcept(p〈0.05). And there were significant difference in alcohol drinking status, body weight control and diet pattern according to level of social network(p〈0.05). But smoking status by social support and network results opposite direction(p〈0.05). 3. There were no regular or consistent result in the relationship between social support, social network and health behavior. 4. Major predictors for health behavior on the multiple logistic regression that included general characteristic, social support and social network were age, instrumental social support and worry about health. Significant variables of multiple logistic regression for health behavior that included social support(instrumental and emotional) and social network were instrumental social support and social network. These results suggest that only a instrumental element and social network may be associated with health behavior. Inconsistent with prior research in these some item, a positive consistent relationship was not found between social support, social network and health behavior. So the study should be replicated to determined the reliability of our findings.
Objectives: This study was to examine the association between structural and functional characteristics of social network and self-rated health in middle-aged Korea population. We also explored gender difference in the relationship between social network and health. Methods: Data were collected from individuals aged 40-69 years old participating in the 2005 survey for the Korean Genome & Epidemiology Study. We examined the association between social network, social support, social conflict and self-rated health using multiple logistic regression analysis stratified by gender. Results: The extent and contact frequency of close people, and social participations were associated by not only the positive function but also the negative function of social network. Both the positive and negative functions of social network affected self-rated health. The relationship between the function of social network and health showed a gender difference: only positive function was significantly associated with health in men while only negative function had significant relationship with health in women. Conclusions: Social support and social conflict affected the health in both genders through different ways. The ambivalent effect of social network on health should be explored further.
Background: Since the mid-20th century, the ways in which social networks and older adults' health are related have been widely studied. However, few studies investigate the relationship between self-rated health and position in a complete social network of one entire Korean rural village. This study highlights use of a complete network in health studies. Methods: Using the Korean Social Life and Health Project, the population-based data of adults aged 60 or older and their spouses in one myeon in Ganghwa island (Ganghwa-gun, Incheon, Korea), Incheon, Korea (with a 95% response rate), this study built a $1,012{\times}1,012$ complete social network matrix of the village. The data were collected from 2011 to 2012, and 731 older adults were analyzed. The ordered logistic models to predict self-rated health allowed us to examine social factors from socio-demographic to individual community activities, ego-centered network characteristics, and positions in a complete network. Results: From the network data, 5 network components were identified. Even after controlling for all other factors, if a respondent belonged to a segregated component, the probability that he or she reported good health dropped substantially. Additionally, high in-degree centrality was connected to greater self-rated health. Conclusion: This finding highlights the importance of social position not only from the respondents' point of view but also from the entire village's perspective. Even if a respondent maintained a large social network, when all of those social ties belonged to a segregated group in the village, the respondent's health suffered from this segregation.
Objectives : This study aims to explore how social support and social network are related with health behavior. Methods : The target population was 12,449 people in Chungcheongbuk-do. The sample was accrued for the period of 3 months in 2008 by face to face interview of direct visiting from systematic sampling method. The instruments used in this study were social support, social network and health behavior. Results : There was significant difference in the level of social support and social network by sex, age, educational level, occupation, and monthly income(p<0.05). There was significant difference in the level of social support by alcohol drinking, physical exercise. There was significant difference in the level of social network by smoking, alcohol drinking, physical exercise, obesity(p<0.05). Multivarite analysis shows significant difference in the level of social instrumental support by smoking, physical exercise. It shows significant difference in the level of social emotional support by smoking. It also shows significant difference in the level of social network by smoking, physical exercise. Conclusion : These results suggest that social support and social network may be associated with health behavior. Because this study was cross sectional research, the order was not found between social support, social network and health behavior. Through a study on monitoring, we will obtain more information for relationship.
Purpose: The purpose of this study was to identify the social network types of elders and to identify differences among latent classes by social network. Methods: The data of 312 elders used in this study were collected from health, welfare, and other facilities and from elders living in the community. The interviews were conducted from July 16 to September 30, 2007 using a standard, structured questionnaire. Descriptive statistics, one way ANOVA with the SPSS 15.0 program and latent class analysis using Maximum Likelihood Latent Structure Analysis (MLLSA) program were used to analyze the data. Results: Using latent class analysis, social network types among older adults were identified as diverse for 58.0% of the sample, as family for 34.0%, and as isolated for 8.0%. The health status of respondents differed significantly by network type. Elders in diverse networks had significantly higher health status and elders in isolated networks had significantly lower physical health status on average than those in all other networks. Conclusion: The results of this study suggest that these network types have important practical implications for health status of elders. Social service programs should focus on different groups based on social network type and promote social support and social integration.
Objectives: The challenging issue of public health program is to strengthen partnership and network between health resources. This study identified the structure and characteristics of school health program network. Methods: In this paper we collected data from schools and organizations in 4 local communities in 2014 that participated to school health program. Using social network analysis techniques we measured the number of component, diameter, density, average degree, node centralization for each network. Results: We determined that networks shared some common organizational structure such as less density, low average degree, and short diameter. Networks were dominated by the health center, and directions of collaborations between nodes were mostly one-way. Conclusions: These findings can help to depict the network of school health program. The further research is necessary to define causal relationship between network effectiveness and public health outcomes.
Lim, Jun Tae;Park, Jong-Heon;Lee, Jin-Seok;Oh, Juhwan;Kim, Yoon
Journal of Preventive Medicine and Public Health
/
제46권1호
/
pp.28-38
/
2013
Objectives: This study aimed to collect information that will help enhance the social networks and improve the quality of life among elderly people by observing the relationship between their social network and health-related quality of life (HRQoL) and by analyzing social network factors affecting HRQoL. Methods: This study was based on the 2008 Community Health Survey in Yeoncheon County. Three hundred elders were included in the study population. We compared the revised Lubben Social Network Scale (LSNS-R) score and Euro quality of life-5 dimensions health status index by demographic characteristics and chronic disease prevalence. We analyzed the data using multiple regression and tobit regression by setting the HRQoL as the dependent variable and social network and other characteristics as the independent variables. We analyzed social network factors by using factor analysis. Results: The LSNS-R score differed significantly according to age and existence of a spouse. According to the results from the hierarchical multiple regression analysis, the LSNS-R explained 0.10 of the variance and LSNS-R friends factor explained 0.10 of the variance. The tobit regression indicated that the contribution of the LSNS-R family size factor to the regression coefficient of the independent variable that affected the HRQoL was $B_T$=2.96, that of the LSNS-R family frequency factor was $B_T$=3.60, and that of LSNS-R friends factor was $B_T$=5.41. Conclusions: Social networks among elderly people had a significant effect on HRQoL and their networks of friends had a relatively higher effect than those of family members.
Purpose This study aims to categorize the types of health, analyze the effects among health types based on network analysis find the most important type of health, and explain whether the results between health types vary depending on demographic characteristics. Design/methodology/approach This study investigated individual physical, clinical, mental, and social health(social capital and social support) levels through a survey of 100 people. Network analysis was applied to the survey data to confirm the degree centrality of nodes. Furthemore, we investigated the differences in core nodes according to gender and age groups. Findings According to the analysis result, social support was the most important health type in the entire group. Furthermore, the importance of health type was different depending on the characteristics of the groups. In the case of men, clinical health was the most important health type, and social support was analyzed to be the most important for women. In the case of young people, clinical health was the most important health type, and mental health was the most important health type in the middle-aged.
The present study investigated the effect of area-specific social networks on urban workers life satisfaction. For this, 356 adults over age 20 were interviewed from June 17th 2013 to June 29th 2013. The findings are as follows: First, the closeness of family network index demonstrates that participants with higher affective support have higher life satisfaction. In addition, stronger extended family network brings more life satisfaction and so does a bigger friendship network. Secondly, the extended family network explains 17.6% of the variance in social networks follows by family network, other network, and friendship network, respectively. The closeness variable of social networks yields statistical significance on all categories of networks. The affective support level in the closeness variable of social networks shows differences as well; family network positively associates with life satisfaction. The purposes of this research are to investigate the actual conditions of urban workers' life satisfaction and the influence of family, extended family, friendship, and other variables on life satisfaction. If social networks have an influence on life satisfaction, to find the domain of social networks that holds the most influences on life satisfaction is an important ground in the process of implementing regional welfare.
Objectives: The nurse visiting health service named Customized Visiting Health Care Program(CVHCP) requires the service innovations incorporating community support into a local service network. The purpose of this study was to assess the community network in CVHCP and inform improvement in this network. Methods: We used Social Network Analysis(SNA) in one CVHCP at H city. Network links were generated by self-administered questionnaires by the 14 community resource centers who quantified their links to all other 25 agents on the list. Links were analyzed by a dichotomous scale for any experience of collaboration and a scored scale of 0 to 3 for level of collaboration using UCINET v6. Results: A list of 14 agents was generated, and local network was dominated by the Public Health Center and a local welfare center named Unlimited Care Center(UCC). According to centrality score, UCC was the most prominent agent, and Public Health Center was the most influential agent, being a link in the pathway flow between other agents for 9.5% of contribution. CVHCP scored lower rank of prominent with 30.8% of other agents reported referring to it. Conclusions: Social network analysis provides a useful network description for informing and evaluation service network improvement in maximizing its service for the CVHCP.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.