• Title/Summary/Keyword: Health monitoring

Search Result 3,823, Processing Time 0.032 seconds

Development and application of construction monitoring system for Shanghai Tower

  • Li, Han;Zhang, Qi-Lin;Yang, Bin;Lu, Jia;Hu, Jia
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1019-1039
    • /
    • 2015
  • Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.

Structural Health Monitoring of short to medium span bridges in the United Kingdom

  • Brownjohn, James M.W.;Kripakaran, Prakash;Harvey, Bill;Kromanis, Rolands;Jones, Peter;Huseynov, Farhad
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.259-276
    • /
    • 2016
  • Historically the UK has been a pioneer and early adopter of experimental investigation techniques on new and operation structures, a technology that would now be descried as 'structural health monitoring' (SHM), yet few of these investigations have been enduring or carried out on the long span or tall structures that feature in flagship SHM applications in the Far East.

Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment

  • Liu, Hong-biao;Zhang, Qiang;Zhang, Bao-hua
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.163-173
    • /
    • 2017
  • Structural health monitoring (SHM) of civil infrastructure using fiber Bragg grating sensor networks (FBGSNs) has received significant public attention in recent years. However, there is currently little research on the health-monitoring technology of high-piled wharfs in coastal ports using the fiber Bragg grating (FBG) sensor technique. The benefits of FBG sensors are their small size, light weight, lack of conductivity, resistance corrosion, multiplexing ability and immunity to electromagnetic interference. Based on the properties of high-piled wharfs in coastal ports and servicing seawater environment and the benefits of FBG sensors, the SHM system for a high-piled wharf in the Tianjin Port of China is devised and deployed partly using the FBG sensor technique. In addition, the health-monitoring parameters are proposed. The system can monitor the structural mechanical properties and durability, which provides a state-of-the-art mean to monitor the health conditions of the wharf and display the monitored data with the BIM technique. In total, 289 FBG stain sensors, 87 FBG temperature sensors, 20 FBG obliquity sensors, 16 FBG pressure sensors, 8 FBG acceleration sensors and 4 anode ladders are installed in the components of the back platform and front platform. After the installation of some components in the wharf construction site, the good signal that each sensor measures demonstrates the suitability of the sensor setup methods, and it is proper for the full-scale, continuous, autonomous SHM deployment for the high-piled wharf in the costal port. The South 27# Wharf SHM system constitutes the largest deployment of FBG sensors for wharf structures in costal ports to date. This deployment demonstrates the strong potential of FBGSNs to monitor the health of large-scale coastal wharf structures. This study can provide a reference to the long-term health-monitoring system deployment for high-piled wharf structures in coastal ports.

Environmental Impact Assessment and Environmental Monitoring: Monitoring Factors and Organization (환경영향평가와 측정 : 환경처 업무 중심으로)

  • Kang, In-Goo;Chang, Chun-Ki;Han, Eui-Jung;Kim, Myung-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.69-75
    • /
    • 1994
  • Environmental Impact Assessment is composed of screening, scoping, inventory survey, prediction, assessment, alternative assessment, mitigation measure, and post management. Environmental monitoring data is applied to EIA process such as prediction and post management. It must he collected and managed systematically for effective applying in EIA process. This article explains factors such as air quality, water quality, soil, ocean, odor, noise & vibration, ecosystem, etc. and organizations of environmental monitoring managed by Ministry of Environment.

  • PDF

Analysis of New Health Monitoring System for Long Span Bridge over the Sea (해상 장대교량의 시공중 계측 및 유지관리 시스템 구축을 위한 분석 연구)

  • Kong, Byung-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.142-147
    • /
    • 2008
  • The cases of using new methods of big blocks are largely increasing on Recent large-scale bridge structures. So the accurate data of responses of bridges following environmental causes are required to be quickly recorded in order to predict. For this reason described above, the research on measuring system should be conducted for more knowledge of the details on application and stability of new methods. In this study, the new health monitoring system that can monitor the real behavior and damages of the bridge during all processes of construction is presented by analyzing cases of domestic and overseas bridge health monitoring system, and applied methods of following bridges.

Study on Building a Structural Health Monitoring System for Uldolmok Tidal Current Power Plant (울돌목 시험조류발전소 구조물 안전감시시스템 구축에 관한 연구)

  • Yi, Jin-Hak;Park, Woo-Sun;Park, Jin-Soon;Lee, Kwang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.635-638
    • /
    • 2007
  • In this paper, we described the fundamental concepts of proposed structural health monitoring system for Uldolmok Tidal Current Power Plant focusing on the use of smart sensors including fiber bragg grating sensors and macro fiber composite sensors. The structural health monitoring system can play an important role to maintain the structural safety for offshore structures like as bridges and high-rise buildings. In the case of tidal current power plant, the monitoring system is much more important since the structures are usually constructed at the site with severer environmental loadings such as high current speed.

  • PDF

Signal-Based Structural Health Monitoring Methods for Caisson-Type Breakwaters (케이슨식 방파제의 신호기반 구조건전성 모니터링 기법)

  • 이용환;김주영;박재형;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.451-458
    • /
    • 2004
  • The caisson-type breakwaters have been widely used in the area of harbor construction. Because of the importance of the breakwaters, structural health monitoring in the breakwaters by using appropriate methods is of great needs. In this study, a caisson-type breakwater that has fatigue cracks due to wave-impact is investigated. First, a signal-based structural health monitoring method is proposed for the breakwaters structures. Excitation and sensor systems are designed on finite element model and monitoring categories are also selected. Structural health monitoring was realized by using measured dynamic response signals and analyzed information.

  • PDF

Portable Electrocardiograph and Smart Device-based Heart Health Monitoring and Risk Notification System (휴대용 심전도 측정기와 스마트 기기 기반의 심건강 모니터링 및 위험도 알림 시스템)

  • Cho, Jinsoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.73-78
    • /
    • 2013
  • This paper proposes a portable electrocardiograph and smart device-based heart health monitoring and risk notification system. The proposed system consists of a portable electrocardiograph and a smart device for a system user, and a web-based monitoring system for observers. This system can improve the convenience and efficiency of measurement by using a light-weight portable electrocardiograph and a smart device. In addition, any authorized person such as caregiver or family member who is not related to medical institution can monitor users'heart health in real-time using the web-based monitoring system. Therefore, a user and authorized remote observers can efficiently monitor and manage user's heart health in daily-life even without any medical institution's help, and can preemptively deal with any possible dangerous situations, such as degeneration of a cardiac disorder and sudden cardiac death.

Design and Implementation of Real-time ECG Monitoring System for Personal Health Records (개인건강기록을 위한 실시간 심전도 모니터링 시스템 설계 및 구현)

  • Kim, Heung Ki;Cho, Jin Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.45-50
    • /
    • 2012
  • In this paper, we propose a real-time ECG monitoring system for personal health records. This study aims to provide services that help patients to monitor their own physical condition and manage their own health records consistently, whereas existing medical services are Medical Institute-Centric model. The system is composed of web server, smart phone, and ECG meter, and web page. Without time and space restraints, It provides us with managing personal health records by performing patient's ECG measurement and real-time monitoring. And also Real-time bidirectional communication between smart phone and web page can be performed rapidly by applying the ECG monitoring with WebSocket Technology that follows HTML5 standard. Through this system, It can handle patient in need immediately.

Structural Health Monitoring of Shanghai Tower Considering Time-dependent Effects

  • Zhang, Qilin;Yang, Bin;Liu, Tao;Li, Han;Lv, Jia
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This paper presents the structural health monitoring (SHM) of Shanghai Tower. In order to provide useful information for safety evaluation and regular maintenance under construction and in-service condition, a comprehensive structural health monitoring (SHM) system is installed in Shanghai Tower, which is composed of a main monitoring station and eleven substations. Structural responses at different construction stages are measured using this SHM system and presented in this study. Meanwhile, a detailed finite element model (FEM) is created and comparison of results between SHM and FEM is carried out. Results indicate that the time-dependent property of concrete creep is of great importance to structural response and the measured data can be used in FEM updating to obtain more accurate FEM models at different construction stages. Therefore, installation of structural health monitoring system in super-tall buildings could be considered as an effective way to assure structural safety during the construction process.