• Title/Summary/Keyword: Health Monitoring

Search Result 3,826, Processing Time 0.03 seconds

Structural Health Monitoring of Shanghai Tower Considering Time-dependent Effects

  • Zhang, Qilin;Yang, Bin;Liu, Tao;Li, Han;Lv, Jia
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This paper presents the structural health monitoring (SHM) of Shanghai Tower. In order to provide useful information for safety evaluation and regular maintenance under construction and in-service condition, a comprehensive structural health monitoring (SHM) system is installed in Shanghai Tower, which is composed of a main monitoring station and eleven substations. Structural responses at different construction stages are measured using this SHM system and presented in this study. Meanwhile, a detailed finite element model (FEM) is created and comparison of results between SHM and FEM is carried out. Results indicate that the time-dependent property of concrete creep is of great importance to structural response and the measured data can be used in FEM updating to obtain more accurate FEM models at different construction stages. Therefore, installation of structural health monitoring system in super-tall buildings could be considered as an effective way to assure structural safety during the construction process.

Development of Health Monitoring System Using Self Magnetization Magnetostrictive Sensor (자기자화자왜센서를 이용한 설비 off-line Health Monitoring 시스템 개발)

  • Kim, Yi-Gon;Moon, Hong-Sik;Kim, Jun;Kim, Ji-Hyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.481-486
    • /
    • 2012
  • This thesis examines the development and application of 'Health Monitoring System' which monitors periodically the state of a pipe of petrochemical plant by using magnetostrictive sensor technology. The existing guided-wave inspection methods cannot be applied to welding part inspection in pipe, and has a limit of precision when applied to general parts because of noise, reflected waves, and so on. This technology uses the information on displacement of a defect through periodic monitoring, which makes more precise inspection, and can be utilized very usefully in a petrochemical plant.

Condition assessment of reinforced concrete bridges using structural health monitoring techniques - A case study

  • Mehrani, E.;Ayoub, A.;Ayoub, A.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.381-395
    • /
    • 2009
  • The paper presents a case study in which the structural condition assessment of the East Bay bridge in Gibsonton, Florida is evaluated with the help of remote health monitoring techniques. The bridge is a four-span, continuous, deck-type reinforced concrete structure supported on prestressed pile bents, and is instrumented with smart Fiber Optic Sensors. The sensors used for remote health monitoring are the newly emerged Fabry-Perot (FP), and are both surface-mounted and embedded in the deck. The sensing system can be accessed remotely through fast Digital Subscriber Lines (DSL), which permits the evaluation of the bridge behavior under live traffic loads. The bridge was open to traffic since March 2005, and the collected structural data have been continuously analyzed since. The data revealed an increase in strain readings, which suggests a progression in damage. Recent visual observations also indicated the presence of longitudinal cracks along the bridge length. After the formation of these cracks, the sensors readings were analyzed and used to extrapolate the values of the maximum stresses at the crack location. The data obtained were also compared to initial design values of the bridge under factored gravity and live loads. The study showed that the proposed structural health monitoring technique proved to provide an efficient mean for condition assessment of bridge structures providing it is implemented and analyzed with care.

An Implementation of Wireless Monitoring System for Health Care (헬스 케어를 위한 무선 모니터링 시스템 구현)

  • Eom, Sang-Hee;Nam, Jae-Hyun;Chang, Yong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.67-71
    • /
    • 2007
  • Recently, a health care need according to the increase of an advanced age population is increasing. The requirement about a health care monitoring is increasing rapidly from general people as well as patient. The requisition about a medical treatment technique and a medical treatment information service is the trend to be expanding. That can be possible minimizing the inconvenience of the patient to take a medical service and continuously monitoring the status of the patient to take a health care service. This paper discusses an implementation of wireless physiological signal monitoring system for health care. The system are composed of the sensor node and monitoring program. The sensor node has the physiological signal measurement part and the wireless communication part. The remote monitoring system has a monitoring program that are communicating the sensor node using bluetooth. The sensor node measured the ECG, pulse wave, blood pressure, Sp02, and heart rate.

  • PDF

An Implementation of Wireless Monitoring System for Health Care (헬스 케어를 위한 무선 모니터링 시스템 구현)

  • Eom, Sang-Hee;Chang, Yong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1401-1407
    • /
    • 2008
  • Recently, a health care need according to the increase of an advanced age population is increasing. The requirement about a health care monitoring is increasing rapidly from general people as well as patient. The requisition about a medical treatment technique and a medical treatment information service is the trend to be expanding. That can be possible minimizing the inconvenience of the patient to take a medical service and continuously monitoring the status of the patient to take a health care service. This paper discusses an implementation of wireless physiological signal monitoring system for health care. The system are composed of the sensor node and monitoring program. The sensor node has the physiological signal measurement part and the wireless communication part. The remote monitoring system has a monitoring program that are communicating the sensor node using bluetooth. The sensor node measured the ECG, pulse wave, blood pressure, SpO2, and heart rate.

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Review of Various Quantitative Methods to Measure Secondhand Smoke (간접흡연의 정량적 노출측정 방법의 고찰)

  • Lim, Soo-Gil;Kim, Joung-Yoon;Lim, Wan-Ryung;Sohn, Hong-Ji;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.100-115
    • /
    • 2009
  • Secondhand smoke (SHS) is one of major public health threats. Since secondhand smoke is complex mixture of toxic chemicals, there has been no standardized method to measure SHS quantitatively. The purpose of this manuscript was to review various quantitative methods to measure SHS. There are two different methods: air monitoring and biological monitoring. Air monitoring methods include exhaled carbon monoxide level, ambient fine particulates, nicotine and 3-ethenylpyridine. Measurement of fine particulates has been utilized due to presence of real-time monitor, while fine particulates can have multiple indoor sources other than SHS. Ambient nicotine and 3-EP are more specific to SHS, although there is no real-time monitor for these chemicals. Biological monitoring methods include nicotine in hair, cotinine in urine, NNK in urine and DNA adducts. Nicotine in hair can provide chronic internal dose, while cotinine in urine can provide acute dose. Since biological monitoring can provide total internal dose, identification of specific exposure source may be difficult. NNK in urine can indicate carcinogenicity of the SHS exposure. DNA adducts can provide overall cancer causing exposure, but not specific to SHS. While there are many quantitative methods to measure SHS, selection of appropriate method should be based on purposes of assessment. Application of accurate and appropriate exposure assessment method is important for understanding health effects and establishing appropriate control measures.

The Quality Control Program for Industrial Hygiene Laboratories in Korea

  • Park, Hae Dong;Chung, Eun Kyo;Kim, Kiwoong
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.322-326
    • /
    • 2017
  • In 1992, the quality control program was introduced in Republic of Korea to improve the reliability of the work environment monitoring, which was introduced in the 1980s. The commission entrusted by the Ministry of Employment and Labor, the Occupational Safety and Health Research Institute has conducted the program for industrial hygiene laboratories including designated monitoring institutions and spontaneously participating agencies. The number of institutions that participated in the program has increased from 30 to 161. The initial conformance ratio in the participants was 43% (organic solvents) and 52% (metals). Thereafter, the conformance ratio increased rapidly and it has remained in a stable state at more than 89% since 1996. As subject materials, 13 kinds of organic solvents and 7 kinds of metals were used. To improve the capability of measurement and analysis of private institutions, educational courses were conducted annually. An assessment at the actual sites of participants was additionally introduced into the program in 2013. Thus, the program turned into a system that administrates the overall process of participants. For the future, the scope of target materials will be extended through additional items. Thus, the reliability of the results of the work environment monitoring is expected to increase accordingly.

A Study on Monitoring of Bio-Signal for u-Health System (u-Health System을 위한 생체신호 모니터링에 관한 연구)

  • Han, Young-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • U-healthcare system has an aim to provide reliable and fast medical services for patient regardless of time and space by transmitting to doctors a large quantity of vital signs collected from sensor networks. Existing u-healthcare systems can merely monitoring patients' health status. In this paper, we describe the implementation and validation of a prototype of a u-health monitoring system based on a wireless sensor network. This system is easy to derive physiologically meaningful results by analyzing rapidly vital signs. The monitoring system sends only the abnormal data of examinee to the service provider. This technique can reduces the wireless data packet overload between a monitoring part and service provider. The real-time bio-signal monitoring system makes possible to implement u-health services and improving efficiency of medical services.

Health Monitoring of High-rise Building with Fiber Optic Sensor (SOFO)

  • Mikami, Takao;Nishizawa, Takao
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.27-37
    • /
    • 2015
  • Structural health monitoring is becoming more and more important in the domain of civil engineering as a proper mean to increase and maintain the safety, especially in the land of earthquakes like Japan. In many civil structures, the deformations are the most relevant parameter to be monitored. In this context, a monitoring technology based on the use of long-gage fiber optic deformation sensor, SOFO is being applied to a 33-floors tall building in Tokyo. Sensors were installed on the $2^{nd}$ floor's steel columns of the building on May 2005 in the early stage of the construction. The installed SOFO sensors were dynamic compatible ones which enable both static and dynamic measurements. The monitoring is to be performed during the whole lifespan of the building. During the construction, static deformations of the columns had been measured on a regular basis using a reading unit for static measurement and dynamic deformation measurements were occasionally conducted using a reading unit for dynamic measurement. The building was completed on August 2006. After the completion, static and dynamic deformation measurements have been continuing. This paper describes a health monitoring technology, SOFO system which is applicable to high-rise buildings and monitoring results of a 33-floors tall building in Tokyo from May 2005 to October 2010.