• Title/Summary/Keyword: Healing abutment

Search Result 53, Processing Time 0.016 seconds

AN EVALUATION OF THE PRIMARY IMPLANT STABILITY AND THE IMMEDIATE LOAD-BEARING CAPACITY ACCORDING TO THE CHANGE OF CORTICAL BONE THICKNESS (치밀골 두께 변화에 따른 임플랜트 1차안정성과 즉시하중부담능 평가)

  • Yi Yang-Jin;Park Chan-Jin;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.248-257
    • /
    • 2005
  • Statement of problem. Cortical bone plays an important role in the primary implant stability, which is essential to immediate/early loading. However, immediate load-bearing capacity and primary implant stability according to the change of the cortical bone thickness have not been reported. Purpose. The objectives of this study were (1) to measure the immediate load-bearing capacity of implant and primary implant stability according to the change of cortical bone thickness, and (2) to evaluate the correlation between them. Material and methods.48, screw-shaped implants (3.75 mm$\times$7 mm) were placed into bovine rib bone blocks with different upper cortical bone thickness (0-2.5 mm) and resonance frequency (RF) values were measured subsequently. After fastening of healing abutment. implants were subjected to a compressive load until tolerated micromotion threshold known for the osseointegration and load values at threshold were recorded. Thereafter, RF measurement after loading, CT taking and image analysis were performed serially to evaluate the cortical bone quality and quantity. Immediate load-bearing capacity and RF values were analyzed statistically with ANOVA and post-hoc method at 95% confidence level (P<0.05). Regression analysis and correlation test were also performed. Results. Existence and increase of cortical bone thickness increased the immediate load-bearing capacity and RF value (P<0.05) With the result of regression analysis, all parameter's of cortical bone thickness to immediate load-bearing capacity and resonance frequency showed significant positive values (P<0.0001). A significant high correlation was observed between the cortical bone thickness and immediate load-beating capacity (r=0.706, P<0.0001), between the cortical bone thickness and resonance frequency (r=0.753, P<0.0001) and between the immediate load-bearing capacity and resonance frequency (r=0.755, P<0.0001). Conclusion. In summary, cortical bone thickness change affected the immediate load-baring capacity and the RF value. Although RF analysis (RFA) is based on the measurement of implant/bone interfacial stiffness, when the implant is inserted stably, RFA is also considered to reflect implant/bone interfacial strength of immediately after placement from high correlation with the immediate load-baring capacity. RFA and measuring the cortical bone thickness with X-ray before and during surgery could be an effective diagnosis tool for the success of immediate loading of implant.

Implant-assisted removable partial denture using digital guide surgery in partially edentulous mandible: A case report (하악 부분 무치악 환자에서 디지털 가이드 수술을 이용한 임플란트 융합 가철성 국소의치 수복 증례)

  • Kim, Taehoon;Jeong, Chang-Mo;Yun, Mi-Jung;Lee, So-Hyoun;Lee, Hyeonjong;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.88-96
    • /
    • 2021
  • Fixed implant prostheses or removable partial dentures are common treatment for partially dentulous patients. Recently, an implant-assisted removable partial denture (IARPD) has been introduced and is widely used. In the case of removable partial dentures using implant attachment and surveyed fixed prostheses, the consideration about parallelism of insertion path between implants and surveyed fixed prostheses is an important factor for success of IARPDs. In this case, she complained of discomfort while using the mandibular removable partial denture. Thus, an IARPD using implant surveyed fixed prostheses was fabricated. Thereafter, more implants were placed by a digital guide surgery to have the same insertion path as the existing surveyed fixed prostheses. Locator attachments were installed to the left and right premolar implants, and the left molar was able to obtain support of the removable partial denture with healing abutment. The clinical results were satisfactory on the aspect of aesthetic and masticatory function.

Effects of implant collar design on marginal bone and soft tissue (임플란트의 collar design이 변연골과 연조직에 미치는 영향)

  • Yoo, Hyun-Sang;Kang, Sun-Nyo;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the effects of implant collar design on marginal bone change and soft tissue response by an animal test. Materials and methods: Two types of Implant (Neobiotech Co. Seoul, Korea) that only differs in collar design were planted on two healthy Beagle dogs. The implants were divided into two groups, the first group with a beveled collar (Bevel Group) and the second group with "S" shaped collar (Bioseal group). Standardized intraoral radiographs were used to investigate the mesio-distal change of the marginal bone. Histological analysis was done to evaluate the bucco-lingual marginal bone resorption and the soft tissue response adjacent to the implant. Mann-Whitney test was done to compare the mesio-distal marginal bone change at equivalent time for taking the radiographs and the tissue measurements between the groups. Results: Radiographic and histological analysis showed that there was no difference in marginal bone change between the two groups (P>.05). Histological analysis showed Bioseal group had more rigid connective tissue attachment than the Bevel group. There was no difference in biological width (P>.05). Bevel group showed significantly longer junctional epithelium attachment and Bioseal group showed longer connective tissue attachment (P<.05). Conclusion: For three months there were no differences in marginal bone change between the Bevel group and the Bioseal group. As for the soft tissue adjacent to the implant, Bioseal group showed longer connective tissue attachment while showing shorter junctional epithelium attachment. There were no differences in biologic width.