• Title/Summary/Keyword: Headspace-Gas chromatography-Mass spectrometry

Search Result 77, Processing Time 0.026 seconds

Comparison Solid Phase Microextraction with Purge & Trap on the GC/MS Analysis of Volatile Organic Compounds in Biota Samples (Solid Phase Microextraction 및 Purge & Trap을 이용한 생물시료 중 휘발성 유기화합물의 GC/MS 분석비교)

  • Ahn, Yun-Gyong;Seo, Jong-Bok;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.392-399
    • /
    • 2001
  • The analysis of n-butylbenzene and 1,2-dibromo-3-chloropropane (DBCP) as volatile organic compounds in biota samples was performed by gas chromatography/mass spectrometry-selected ion monitoring mode. The target compounds, n-butylbenzene and DBCP, in biota samples were extracted by headspace solid phase microextraction (SPME) with $100{\mu}m$ polydimethyl siloxane (PDMS) fiber and purge & trap method. The extraction recoveries of these compounds obtained by SPME was 85.8% for n-butylbenzene and 92.4% for DBCP, respectively. Each value of method detection limit were $0.15{\mu}g/kg$ and $0.05{\mu}g/kg$, respectively. While in the case of purge & trap method, the extraction recovery was 115.2% for n-butylbenzene, 80.9% for DBCP and method detection limit were $0.04{\mu}g/kg$ and $0.70{\mu}g/kg$, respectively. The extraction yields and detection limits of these compounds obtained by purge & trap were equivalent to those by SPME.

  • PDF

Essential Oil Analysis of Illicium anistum L. Extracts

  • Min, Hee-Jeong;Kim, Chan-Soo;Hyun, Hwa-Ja;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.682-688
    • /
    • 2017
  • Fresh japanese anise (Illicium anisatum L.) tree leaves were collected and ground after drying. The essential oils of the leaves were analyzed by gas chromatography-mass spectrometry (GC-MS) using headspace (HS) and solid phase-microextra (SPME) methods. Volatile components of the leaves were identified 21 and 65 components in HS and SPME, respectively. The main components of the essential oils obtained by HS method were eucalyptol (36.7%), (+)-sabinene (15.61%), ${\delta}$-3-carene (6.87%), ${\alpha}$-pinene (6.07%), ${\gamma}$-terpinen (5.72%), ${\alpha}$-limonene (5.26%), ${\beta}$-myrcene (4.13%), ${\alpha}$-terpinene (4.04%) and ${\beta}$-pinene (3.73%). The other components were less than 3.5%. SPME method also showed that eucalyptol (17.88%) was main. The other were 5-allyl-1-methoxy-2 (13.29%), caryophyllene (6.09%), (+)-sabinene (5.60%), ${\alpha}$-ocimene (4.89%) and ${\beta}$-myrcene (3.73%), and the rest were less amounts than 3.5%. This work indicated that many more volatile components were isolated, comparing to the previous literature data and that SPME method was much more effective than HS method in the analysis of the volatile components.

Studies on the Free and Bound Aroma Compounds in Green and Fermented Teas (녹차와 후발효차의 유리형 및 결합형 향기성분에 대한 연구)

  • Lee, Hye-Jin;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.407-412
    • /
    • 2011
  • Free and bound aroma compounds in green and fermented teas treated with microbial-fermentation were analyzed using headspace-solid phase microextraction gas chromatography (GC) and GC-mass spectrometry. Aldehydes and ketones in green tea decreased during microbial fermentation, whereas linalool and geraniol increased in the fermented tea. After enzyme treatment, (Z)-3-hexen-1-ol increased significantly following enzymatic hydrolysis of both green and fermented teas. In addition, benzaldehyde, 3-hexenyl acetate, and geraniol also increased in green tea with enzyme treatment. Bound aroma compounds in the green and fermented teas increased at different levels of added enzyme. We demonstrated the enhancement of both green and fermented teas by enzyme treatment, which can lead to improvement in the flavor qualities of green and fermented teas.

Analysis of volatile compounds and metals in essential oil and solvent extracts of Amomi Fructus (사인으로부터 추출한 정유와 용매 추출물의 휘발성 물질 및 금속성분 분석)

  • Lee, Sam-Keun;Eum, Chul Hun;Son, Chang-Gue
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.436-445
    • /
    • 2015
  • Amomi Fructus with anti-oxidative activity was chosen and essential oil was obtained by SDE (simultaneous distillation extraction), and 39 constituents were determined by GC-MS (gas chromatography-mass spectrometry). Major components were camphor, borneol acetate, borneol, D-limonene and camphene. Three solvent extracts such as hexanes, diethyl ether and methylene chloride from Amomi Fructus were obtained. These were analyzed by GC-MS and 4 more constituents were identified in addition to 39 components discovered in essential oil. Five major components such as camphor, borneol acetate, borneol, D-limonene and camphene were also detected, however the relative peak percents of those components were different from those of constituents in essential oil. To estimate the kind and the amount of materials evaporated at certain temperature and conditions from essential oil and solvent extracts, dynamic headspace apparatus was used and materials evaporated and trapped at certain conditions were analyzed by GC-MS. Recovery yield of SDE method from Amomi Fructus was measured by using camphor and standard calibration solution of camphor methanol solution and, the yield was 82.0%. Content of Hg was measured by mercury analyzer and contents of Cd, Pb, Cr, Mn, Co, Ni, Cu and Zn in Amomi Fructus, essential oils and solvent extracts were determined by ICP-MS (Inductively coupled plasma-mass spectrometer). Pb, Cd and Hg were measured in the concentration of 0.72 mg/kg, <0.10 mg/kg and 0.0023 mg/kg, respectively and these were below permission level of purity test. Contents of Mn, Cu and Zn in Amomi Fructus were 213 mg/kg, 8.29 mg/kg and 31.0 mg/kg, respectively and which were relatively higher than other metals such as Cr, Co and Ni. Metals such as Mn (0.65 ~ 9.08 mg/kg), Cu (1.16 ~ 4.40 mg/kg) and Zn (1.10 ~ 3.80 mg/kg) in essential oil and solvent extracts were detected. At this point it is not clear that the metals were cross-contaminated in the course of treating Amomi Fructus or metals were contained in Amomi Fructus. The influence evaluation toward biological model study of these metals in essential oil and solvent extracts will be needed.

Analysis of volatile aroma compounds from vanilla perfume using headspace disk type monolithic material sorptive extraction (시료상층부 원판 형태 단일 다공성 물질을 이용한 바닐라 향수의 휘발성 아로마 성분 추출 분석)

  • Son, Hyun-Hwa;Lee, Dong-Sun
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.421-428
    • /
    • 2011
  • In this study, headspace disk type monolithic material sorptive extraction (HS-MMSE) was developed, validated and applied to the analysis of volatile aroma compounds from vanilla perfume by gas chromatography -mass spectrometry (GC/MS). HS-MMSE uses monolithic material (MonoTrap) based on silica bonded with octadecyl silane (ODS) and activated carbon as a sorbent. Aroma compounds was adsorbed onto the MonoTrap in headspace and extracted by only 100 ${\mu}L$ of solvent. Total 12 volatile compounds from vanilla perfume were successfully analyzed using HS-MMSE. The influence of extractive parameters was investigated and optimized, using benzyl acetate, linalyl acetate, vanillin, ethyl vanillin as target compounds. Under the optimum condition, the limit of detection (S/N = 3) and the limit of quantification (S/N = 10) of proposed method for the target compounds were obtained within the range of 8.35~13.76 ng and 27.82~45.88 ng, respectively. The method showed good linearity with correlation coefficient more than 0.9888, satisfactory recovery and reproducibility. These results showed that HS-MMSE using disk type MonoTrap is a new promising technique for the analysis of volatile aroma compounds from vanilla perfume.

Composition and Cytotoxicity of Essential Oil from Korean rhododendron (Rhododendon mucronulatum Turcz. var. ciliatum Nakai) (털진달래(Rhododendon mucronulatum Turcz. var. ciliatum Nakai) 정유의 성분분석과 독성평가)

  • Park, Yu-Hwa;Kim, Song-Mun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.233-237
    • /
    • 2008
  • The essential oil was obtained from the aerial part of Rhododendon mucronulatum Turcz. var. ciliatum Nakai by steam distillation, samples were collected by headspace (HS) and solid-phase microextraction (SPME) methods, and the compositions of the oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Nineteen constituents were identified from the essential oil: 15 carbohydrates, 3 alcohols, and 1 acetates. Major constituents were 2-${\beta}$-pinene (16.1%), camphene (11.9%), ${\delta}$-3-carene (11.4%), d,l-limonene (9.5%), and ${\gamma}$-terpinene (9.5%). By SPME extraction, seventeen constituents were identified: 13 hydrocarbons, 1 alcohol, 1 nitrogen-containing compound, 1 acetate, and 1 amine. Major constituents of the SPME-extracted sample were cam phene (19.6%), 2-${\beta}$-pinene (18.0%), ${\delta}$-3-carene (17.4%), trimethyl hydrazine (9.7%), ${\gamma}$-terpinene (8.5%), and d,l-limonene (5.5%). By HS extraction, thirteen constituents were identified: 11 hydrocarbons, 1 alcohol, and 1 nitrogen-containing compound. Major constituents of the HS-extracted sample were camphene (25.8%), ${\delta}$-3-carene (24.8%), 2-${\beta}$-pinene (20.2%), d,l-limonene (5.4%), tricyclene (5.1%) and trimethyl hydrazine (4.6%). The fragrance of the essential oil was coniferous, balsamic, and woody, and the $IC_{50}$ value of the essential oil was 0.030 ${\mu}g/mg$ in MTT assay using UaCaT keratinocyte cell line.

Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

  • Lee, Samantha;Hung, Richard;Yin, Guohua;Klich, Maren A.;Grimm, Casey;Bennett, Joan W.
    • Mycobiology
    • /
    • v.44 no.3
    • /
    • pp.162-170
    • /
    • 2016
  • In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and ${\beta}-farnesene$), and ${\beta}-caryophyllene$ were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

Changes of Volatiles from Apple Fruits during Maturity and Storage -Part. I. Identification and Determination of Volatiles in the Fruits- (사과 성숙(成熟) 및 저장중(貯藏中) 향기성분(香氣成分)의 변화(變化) -제일보(第一報). 과실(果實) 성숙중(成熟中) 향기성분(香氣成分)의 동정(同定) 및 정량(定量)-)

  • Shim, Ki-Hwan;Sohn, Tae-Hwa;Kim, Myung-Chan;Kang, Shin-Kwoen;Park, Seok-Kyu
    • Applied Biological Chemistry
    • /
    • v.27 no.1
    • /
    • pp.14-20
    • /
    • 1984
  • Volatiles from Mallus pumila Miller Var. Fuji, Ralls Janet and Jonathan during maturity were examined. The volatiles of apples were collected by the headspace trapping method using. Tenax GC and identified by gas liquid chromatography and GC-mass spectrometry. Among over 34 GLC peaks, 23 esters, 9 alcohols and 2 aldehydes were identified. The quantity of volatiles produced was increased in proportion to the degree of maturity, and 1-butanol, isobutyl butyrate, 2-pentanol, ethyl valerate and hexanal were major.

  • PDF

Thermal Changes of Aroma Components in Soybean Pastes (Doenjang) (된장 가열조리 시 생성되는 향기성분 변화)

  • Lee, Seung-Joo;Ahn, Bo-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.271-276
    • /
    • 2008
  • In this study, volatile compounds were isolated from traditional and commercial fermented soybean pastes according to different heating temperatures (room temperature, $50^{\circ}C$, $100^{\circ}C$) using headspace-solid phase microextraction (HS-SPME). The compounds were then analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 51 volatile components, including 18 esters, 3 alcohols, 6 acids, 8 pyrazines, 5 volatile phenols, 6 aldehydes, and 5 miscellaneous compounds, were identified. Esters and acids such as ethyl hexadecanoate, acetic acid, and 2/3-methyl butanoic acid were the largest groups among the quantified volatiles. By applying principal component analyses to the GCMS data sets, differences were observed in the volatile components of the soybean pastes as to the different heating temperatures. A large variation was shown between the volatile components of the traditional and commercial soybean pastes by increasing the heating temperature. Commercial samples had significantly higher levels of longer chain ethyl esters, aldehydes, and thermal degradation products such as maltol and 2-acetyl pyrrole, while traditional samples showed higher concentrations of acids and pyrazines.

Profiling Patterns of Volatile Organic Compounds in Intact, Senescent, and Litter Red Pine (Pinus densiflora Sieb. et Zucc.) Needles in Winter

  • CHOI, Won-Sil;YANG, Seung-Ok;LEE, Ji-Hyun;CHOI, Eun-Ji;KIM, Yun-Hee;YANG, Jiyoon;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.591-607
    • /
    • 2020
  • This study was aimed to investigate the changes of chemical composition of the volatile organic compounds (VOCs) emitted from red pine needles in the process of needle abscission or senescence. The VOCs in intact, senescent, and litter red pine needle samples were analyzed by headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS). And then, multivariate statistical interpretation of the processed data sets was conducted to investigate similarities and dissimilarities of the needle samples. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to investigate the dataset structure and discrimination between samples, respectively. From the data preview, the levels of major components of VOCs from needles were not significantly different between needle samples. By PCA investigation, the data reduction according to classification based on the chlorophyll a / chlorophyll b (Ca/Cb) ratio were found to be ideal for differentiating intact, senescent, and litter needles. The following OPLS-DA taking Ca/Cb ratio as y-variables showed that needle samples were well grouped on score plot and had the significant discriminant compounds, respectively. Several compounds had significantly correlated with Ca/Cb ratio in a bivariate correlation analysis. Notably, the litter needles had a higher content of oxidized compounds than the intact needles. In summary, we found that chemical compositions of VOCs between intact, senescent, and litter needles are different each other and several compounds reflect characteristic of needle.