• Title/Summary/Keyword: Head-feed combine

Search Result 15, Processing Time 0.027 seconds

Threshing Performance dependent upon Feed Rate and Threshing Drum Length for Head-Feed Combine (공급률 및 탈곡통 길이 변화에 따른 자탈형 콤바인 탈곡 성능)

  • Seo, Sin-Won;Lee, Sang-Woo;Huh, Yun-Kun
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.2
    • /
    • pp.159-166
    • /
    • 2006
  • Threshing loss was increased due to dropping of the threshing efficiency when the 4 row head-feed combine harvested 5 row rice to improve harvesting performance of a combine. Reasonable design criteria were examined to determine the ranges of both of feed rate and the length of threshing drum for the 4 row head-feed combine being used as a 5-row combine. Harvesting performance increased as working width or working speed increased, it resulted in 15% increase when the working width increased from 4 row to 5 row. Harvesting operations of the 4 row combine performed normally in the 4 row rice in threshing loss less than 1%, however, threshing loss increased to 2.25% in the 5 row due to poor threshing efficiency. The length of threshing drum was increased from 710 mm to 810 mm as well as the speed of crop feed chain was increased from 0.61 m/s to 0.75 m/s so as to improve the poor threshing efficiency resulted from the enlarged working width from the 4 row to the 5 row, which would decrease threshing loss less than 1%.

  • PDF

Automatic Control of the Combine(III) -Automatic Feeding Depth Control of the Head-feed Combine- (콤바인의 자동제어(自動制御)에 관한 연구(硏究)(III) -자탈형(自脱型) 콤바인의 탈곡(脱穀)깊이 자동제어(自動制御)-)

  • Chung, C.J.;Kim, S.C.;Nam, K.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.2
    • /
    • pp.94-103
    • /
    • 1989
  • This study was intended to develop the automatic feeding depth control system of the head-feed combine which could feed the rice head into threshing unit at the optimal depth regardless of plant height and uneven ground surface. In the control system, one-board microcomputer was used for the controller instead of conventional electric circuits. Field test of the combine equipped with the control system was conducted to evaluate its overall performance. It was also investigated how the location and time delay of rice head sensor affect the system performance.

  • PDF

Development of a Rice Weighing System for Head-Feed Combine (자탈형 콤바인용 벼 무게 측정시스템 개발)

  • Lee, C.K.;Choi, Y.;Jun, H.J.;Kim, H.J.;Lee, S.B.;Ryu, C.S.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.332-338
    • /
    • 2007
  • Yield mapping is necessary for precision farming. An on-site rice weighing system for a head-feed combine was developed to measure the total weight of rice grain harvested while the combine was operated. A load cell system was used to monitor rice weights accumulated into the combine grain tank using a load cell. This method gave cumulative grain weight readings as a function of time. The system consisted of a load cell, two supporting brackets, and a computer-based data acquisition system. The weights measured with the system from two fields were compared with those obtained with a commercially available electronic balance. The response of the load cell to varying grain weights was linearly modeled, showing a coefficient of determination of 0.998 and a standard error of ${\pm}4.09kg$.

Chaff-outlet Grain Loss of Head-feed Combine -Development of a Monitor for Detecting Chaff-outlet Grain Loss of Head-feed Combine- (자탈형(自脱型) 콤바인의 배진손실(排塵損失)에 관(關)한 연구(硏究)(I) -자탈형(自脱型) 콤바인의 배진손실(排塵損失) 모니터 개발-)

  • Chung, C.J.;Choe, J.S.;Choi, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.251-261
    • /
    • 1989
  • The amount of grain loss incurred during harvesting operation through the chaff-outlet of combine may not be negligible. To minimize this grain loss and optimize condition of combining, it may be necessary that the amount of chaff-outlet loss dependent on varying crop condition is to be estimated as exactly as possible. This study was thus intended to develop the monitor that could indicate the amount of grain loss occurred through the chaff-outlet of combine during harvesting operation. The function of this monitor is to measure at the sounding board the impact sound of paddy kernels which could be distinguished from those of other threshing products through chaff-outlet, and from vibration or noise created by the combine engine and other moving parts. To develop such monitor, the frequency distributions of each sound generated by the impact of grain and chaff, the sound generated by the impact of the mixture of grain and chaff, and vibration or noise created by the combine engine and other moving parts were investigated experimentally. From the results of frequency analyses, the trainsducer adequate for the monitering system was selected and sounding board was constructed. The grain loss monitor thus obtained was tested by attaching the sounding board to the chaff-outlet of combine.

  • PDF

Optimizing the design factors of the head-feed type combine(II) -Threshing characteristics of the head-feed threshing teeth- (자탈형 콤바인 탈곡부 설계요인(設計要因)의 적정화(適正化)를 위한 연구(硏究)(II) -탈곡치의 탈곡특성-)

  • Nam, S.I.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.4
    • /
    • pp.9-19
    • /
    • 1988
  • The threshing of head-feed combine may be accomplished mainly by the action of impact between threshing teeth and rice. In this study, it was attempted to assess threshing performance characteristics of head-feed threshing teeth. And the characteristics of threshing teeth will be applied to the method which could analyze the time and order of impact between teeth and the rice, which was used as a basis for predicting the threshing performance and determining the optimum design parameters. The results of the study are summarized as follows: 1. About 50% of threshed material were threshed by the beginning 7 impacts on the rice bundle. Threshing torque decreased until 25 impacts and did not change thereafter. 2. There was significant difference in the threshability according to the shape of threshing teeth. The triangular-shaped tooth was the most efficient in threshability ratio and the semicircle-shaped tooth was the lowest. There was no significant difference in specific energy requirement for the varied teeth design. Torn-head ratio being generated by the semicircle-shaped and the triangular-shaped teeth in series was less than that by a single tooth with the triangular-shaped and the double setting of the triangular-shaped. Chaff generation ratio by the triangular-shaped and the semicircle-shaped teeth was less than the others tried. 3. The triangular-shaped teeth in series, which was newly designed for this study, showed an intermediate characteristics between the double setting of the triangular-shaped and the semicircle- shaped teeth. Threshability ratio of the triangular-shaped teeth in series was higher than that of the semicircle and lower than the double setting of the triangular-shaped tooth. Torn-head generation ratio for it was about same as that of the semicircle. Chaff being generated by the triangular-shaped teeth in series was about same as the double setting of the triangular-shaped teeth. 4. About 40% of threshed grains which passed through concave were concentrated under the threshing tooth and the rest of grains displayed a skew distribution toward the inlet of threshing chamber.

  • PDF

A Forward Speed Control of Head-feed Combine Using Continuously Variable V-belt Transmission -Combine Load Characteristics- (V-벨트 무단변속기(無斷變速機)를 이용(利用)한 자탈형(自脫型) 콤바인의 주행속도(走行速度) 제어(制御)(I))

  • Choi, K.H.;Ryu, K.H.;Cho, Y.K.;Park, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.124-132
    • /
    • 1991
  • This study was carried out to obtain the information needed in the development of forward speed control system and the improvement of combine performance. The effects of variety, grain moisture content and forward speed on the combine load characteristics were investigated through experiments. The results of this study are summarized as follows. 1. A data acquisition system was developed to measure the engine speed and the torques and speeds of the threshing cylinder, dean-grain auger and tailings-return auger. The system consisted of transducers, signal conditioner, interface board and microcomputer. The system accuracy is better than ${\pm}2.3%$ full scale. 2. Linear regression equations were obtained for the torque, speed and power requirement of threshing cylinder for different paddy varieties, grain moisture contents and feed rates. 3. The maximum value of relative frequency for threshing cylinder torque decreased as the increase in feed rate and moisture content. The range of torque fluctuation was 1.2~3.7 and 1.2~1.9 times the average and maximum torque, respectively. The maximum value of power spectrum density (PSD) appeared to be about 11 Hz regardless of paddy variety, grain moisture content and feed rate. 4. The speed of tailings return thrower decreased rapidly at below 900rpm, and it fell to near zero about 3 seconds after that time. When the travelling of combine harvester was stopped immediately after sensing the overload, it took about 7 seconds for a full recovery of the no-load speed of tailings return thrower.

  • PDF

Automatic Control of the Combine(II) -Automatic Header Height Control of the Head-feed Combine- (콤바인의 자동제어(自動制御)에 관한 연구(硏究)(II) -자탈형(自脱型) 콤바인의 예취(刈取)높이제어(制御)-)

  • Chung, C.J.;Nam, Y.S.;Nam, S.I.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.2
    • /
    • pp.85-93
    • /
    • 1989
  • This study was intended to develop the system which controls header height of combine automatically by means of sensing the difference between the header and the ground surface. A micro-computer was used for the controller. The sensing unit designed for the study was composed of potentiometer, oscillating link, and gage wheel. An electric-hydraulic circuit was driven by microcomputer to control header height of combine. Performance of the control system was tested by computer simulation, stationary operation of header, and traveling on the simulated ground.

  • PDF

Tailings Behavior and Performance of the Tailings Return Unit of the Head-feed Combine(I) -Ratio and Compositions of Tailings- (자탈형(自脱型) 콤바인 환원장치(還元裝置)의 환원물(還元物) 유동현상(流動現象)과 환원성능(還元性能) 개선(改善)에 관한 연구(硏究)(I) -환원율(還元率)과 조성비(組成比)-)

  • Cho, Y.K.;Chung, C.J.;Choi, K.H.;Park, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 1991
  • This study was undertaken to investigate the ratio and compositions of tailings of the tailings return unit in the commercially available head-feed combines. The ratio of the returned tailings to the sum of the threshed grain and the returned tailings was 2.3~7.2% for various varieties of rice and operational conditions of combines tested and increased as the feeding rate and the cleaning air volume increased. The analysis of the returned tailings showed that the composition of rubbish and short straw was decreased as the feeding rate and the cleaning air volume increased.

  • PDF

Automatic Control of the Comnbine(I) -Automatic guidance control of the head-feed combine- (콤바인의 자동제어에 관한 연구(I) -자탈형(自脱型) 콤바인의 주행방향제어(走行方向制御)-)

  • Chung, Chang-Joo;Kim, Seong-Ok;Kim, Soo-Sung
    • Journal of Biosystems Engineering
    • /
    • v.13 no.2
    • /
    • pp.38-45
    • /
    • 1988
  • This study was intended to develop the system automatically controlling travel direction of combine by means of sensing paddy rows. The control system was composed of three detecting levers having different length, micro-switch, microcomputer and electro-hydraulic control system. Sensor and control system developed was tested to estimate optimum design values and its actual performance as installed in combine. The computer simulation and performance test at simulated and actual field were conducted to test for possibility of practical use. The results of the study arc summarized. as follows: 1. The travel traces of combine hiving the conventional sensor with 2 levers and the new sensor detecting the slope of paddy rows were compared through computer simulation. Turning frequency of combine having new sensor was fewer than that of conventional sensor, but the rate of turning for the combine with new sensor was much greater than that of conventional sensor. 2. As sensor was established behind the tip of divider, the sensor itself well followed paddy rows but the tip of divider did not, resulting in divider being deviated from paddy rows. It was analyzed that the sensor should be attached closer to the tip of divider to have a better performance of the control system. 3. The greater the length of sensor lever for given location of sensor attachment and combine forward speed, the higher sensitivity of turning in control system. Moreover, increasing combine speed resulted in a worse performance of control system following paddy rows. Consequently, it was necessary that an optimum length of sensor attachment and for the range of combine operational speed. 4. Field test of combine installed with the sensor and electro-hydraulic system developed in this study showed that it may be operated smoothly and well behaved to paddy rows to 4th gear of combine speed which was 59cm/s. Consequently. it was concluded that the combine with the guidance control system developed in this study may be successfully used for paddy combining.

  • PDF

Chaff-outlet Grain Loss of Head-feed Combine -Changes in chaff-outlet gram loss on the variety, location of chaff-outlet loss control plate and traveling speed- (자탈형(自脱型) 콤바인의 배진손실(排塵損失)에 관(關)한 연구(硏究)(II) -품종(品種), 배진조절판(排塵調節板)의 위치, 작업속도(作業速度)가 배진손실량(排塵損失量)에 미치는 영향-)

  • Chung, C.J.;Choe, J.S.;Choi, Y.S.;Chung, S.I.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.310-318
    • /
    • 1990
  • The amount of grain loss incurred during harvesting operation through the chaff-outlet of combine may not be negligible. To minimize this grain loss and optimize condition of combining, it may be necessary that the amout of chaff-outlet loss dependent on varying crop condition is to be estimated as exactly as possible. This study was thus intended to develop the monitor that could indicate the amount of grain lost through the chaff-outlet of combine during haravesting operation, and to find out driving and operating method of combine that could reduce chaff-outlet loss. In the study(1), the frequency distributions of each sound generated by the impact of kernels and chaff, the sound generated by the impact of the mixture of kernels and chaff, and vibration or noise created by the combine engine and other moving parts were investigated experimentally. Based on the results of frequency analyses, the loss monitor was developed which could measure the impact sound of paddy kernels that could be distinguished from those of other threshing products through chaff-outlet, and from vibration or noise created by the combine engine and other moving parts. Also in this study, detecting capability of monitor was tested by comparing the amount of grain lost through chaff-outlet with the amount of grain detected by the loss monitor, and changes in chaff-outlet grain loss on the increase of traveling speed, location of chaff-outlet loss control plate and variety of paddy rice were measured using the loss monitor. The monitor developed in this study efficiently measured the amount of grain lost through the chaff-outlet of combine. It was found that the chaff-outlet grain loss ratio was affected greatly by the variety of paddy rice, the location of chaff-outlet loss control plate and traveling speed of combine.

  • PDF