• Title/Summary/Keyword: Head phantom

Search Result 286, Processing Time 0.023 seconds

Monte Carlo Study of MOSFET Dosimeter Dose Correction Factors Considering Energy Spectrum of Radiation Field in a Steam Generator Channel Head (원전 증기발생기 수실 내 에너지 스펙트럼을 고려한 MOSFET 방사선검출기 선량보정인자 결정에 관한 몬테칼로 전산모사 연구)

  • Cho, Sung-Koo;Choi, Sang-Hyoun;Kim, Chan-Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.165-171
    • /
    • 2006
  • In Korea, a real-time effective dose measurement system is in development. The system uses 32 high-sensitivity MOSFET dosimeters to measure radiation doses at various organ locations in an anthropomorphic physical phantom. The MOSFET dosimeters are, however, mainly made of silicon and shows some degree of energy and angular dependence especially for low energy photons. This study determines the correction factors to correct for these dependences of the MOSFET dosimeters for accurate measurement of radiation doses at organ locations in the phantom. For this, first, the dose correction factors of MOSFET dosimeters were determined for the energy spectrum in the steam generator channel of the Kori Nuclear Power Plant Unit #1 by Monte Carlo simulations. Then, the results were compared with the dose correction factors from 0.652 MeV and 1.25 MeV mono-energetic photons. The difference of the dose correction factors were found very negligible $(\leq1.5%)$, which in general shows that the dose corrections factors determined from 0.662 MeV and 1.25 MeV can be in a steam general channel head of a nuclear power plant. The measured effective dose was generally found to decrease bit $\sim7%$ when we apply the dose correction factors.

Cancellation of Motion Artifact in MRI (MRI에 있어서 체동 아티팩트의 제거)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.70-78
    • /
    • 2000
  • In this study, a new method for canceling MRI artifacts through the motion translation of image plane is presented Breathing often makes problems in a clinical diagnosis. Assuming that the head moves up and down due to breathing, rigid translational motions in only y(phase encoding axis) direction are treated Unlike the conventional Iterative phase retrieval algorithm, this method is based on the MRI imaging process and analyzing of Image property A new constraint condition with which the motion component and the true image component in the MRI signal can be separated by a simple algebraic operation is extracted After the x(read out) directional Fourier transformation of MRI signal is done, the y(phase encoding) directional spectrum phasing value is Just an algebraic sum of the Image component and the motion component Meanwhile, as It is known that the density of subcutaneous fat area is almost uniform in the head tomographs, the density distribution along a y directional line on this fat area is regarded as symmetric shape If the density function is symmetric, then the phase of spectrum changes linearly with the position Hence, the departure component from the linear function can be separated as the motion component Based on this constrant condition, the new method of artifact cancellation is presented Finally, the effectiveness of this algorithm IS shown by using a phantom with simulated motions.

  • PDF

Evaluation of Effective Dose with National Diagnostic Reference Level using Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 국내 일반엑스선검사 진단참고수준의 유효선량 평가)

  • Lee, Seung-Youl;Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.1041-1047
    • /
    • 2021
  • In this study, the effective dose for frequently general radiography among the diagnostic reference level (DRL) for examinations provided by the government in Korea was evaluated using the Monte Carlo N-Particle eXtended (MCNPX) simulation tool. We were selected to evaluate for a total of 5 examination sites which included head anterior-posterior, chest (posterior-anterior, lateral), abdomen anterior-posterior and pelvis anterior-posterior. Physical conditions such as tube voltage and tube current used in MCNPX simulation were used in domestic conditions of the Korea Disease Control and Prevention Agency (KDCA). To evaluate domestic medical radiation exposure, we used the HDRK-Man computerized human phantom manufactured based on the international standard ICRP 103 that was applied to the MCNPX simulation. The phantom could represent the standard body shape of Koreans. As a results, the effective dose corresponding to the DRL based on adult males of head anterior-posterior position was 0.086 mSv, chest posterior-anterior position was 0.05 mSv, chest lateral was 0.354 mSv, abdomen anterior-posterior position was 0.548 mSv, and pelvis anterior-posterior position was 0.451 mSv.

Calculation of Renal Depth by Conjugate-View Method Using Dual-head Gamma Camera (이중 헤드 감마 카메라를 이용한 Conjugate-View 계수법에 의한 신장 깊이 도출)

  • Kim, Hyun-Mi;Suh, Tae-Suk;Choe, Bo-Young;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo;Lee, Hyoung-Koo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.6
    • /
    • pp.378-388
    • /
    • 2001
  • Purpose: In this study, we developed a new method for the determination of renal depth with anterior and posterior renal scintigrams in a dual-head gamma camera, considering the attenuation factor $e^{-{\mu}x}$ of the conjugate-view method. Material and Method: We developed abdomen and kidney phantoms to perform experiments using Technetium-99m dimercaptosuccinic acid ($^{99m}Tc$-DMSA). The phantom images were obtained by dual-head gamma camera equipped with low-energy, high-resolution, parallel-hole collimators (ICONf, Siemens). The equation was derived from the linear integration of omission ${\gamma}$-ray considering attenuation from the posterior abdomen to the anterior abdomen phantom surface. The program for measurement was developed by Microsoft Visual C++ 6.0. Results : Renal depths of the phantoms were derived from the derived equations and compared with the exact geometrical values. Differences between the measured and the calculated values were the range of 0.1 to 0.7 cm ($0.029{\pm}0.15cm,\;mean{\pm}S.D.$). Conclusion: The present study showed that the use of the derived equations for renal depth measurements, combined with quantitative planar imaging using dual-head gamma camera, could provide more accurate results for individual variation than the conventional method.

  • PDF

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

Assessment of Effective Dose from Diagnostic X-ray Examinations of Adult (진단X선에 의한 성인의 진단행위별 유효선량평가)

  • Kim, Woo-Ran;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.155-164
    • /
    • 2002
  • Methodology to evaluate the effective doses to adults undergoing various diagnostic x-ray examinations were established by Monte Carlo simulation of the x-ray examinations. Anthropomorphic mathematical phantoms, the MIRD5 male phantom and the ORNL female phantom, were used as the target body and x-ray spectra were produced by the x-ray spectrum generation code SPEC78. The computational procedure was validated by comparing the resulting doses to the results of NRPB studies for the same diagnostic procedures. The effective doses as well as the organ doses due to chest, abdomen, head and spine examinations were calculated for x-rays incident from AP, PA, LLAT and RLAT directions. For instance, the effective doses from the most common procedures, chest PA and abdomen AP, were 0.029 mSv and 0.44 mSv, respectively. The fact that the effective dose from PA chest x-ray is far lower than the traditional value of 0.3 mSv(or 30 mrem), which results partly from the advances of technology in diagnostic radiology and partly from the differences in the dose concept employed, emphasizes necessities of intensive assessment of the patient doses in wide ranges of medical exposures. The methodology and tools established in this study can easily be applied to dose assessments for other radiology procedures; dose from CT examinations, dose to the fetus due to examinations of pregnant women, dose from pediatric radiology.

Accuracy in target localization in stereotactic radiosurgery using diagnostic machines (정위적 방사선수술시 진단장비를 이용한 종양위치결정의 정확도 평가)

  • 최동락
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.3-7
    • /
    • 1996
  • The accuracy in target localization of CT, MR, and digital angiography were investigated for stereotactic radiosurgery. The images using CT and MR were obtained out of geometrical phantom which was designed to produce exact coordinates of several points within a 0.lmm error range. The slice interval was 3mm and FOV was 35cm for CT and 28cm for MR. These images were transferred to treatment planning computer using TCP/IP in forms of GE format. Measured 3-D coordinates of these images from planning computer were compared to known values by geometrical phantom. Anterior-posterior and lateral films were taken by digital angiography for measurement of spatial accuracy. Target localization errors were 1.2${\pm}$0.5mm with CT images, 1.7${\pm}$0.4mm with MR-coronal images, and 2.1${\pm}$0.7mm with MR-sagittal images. But, in case of MR-axial images, the target localization error was 4.7${\pm}$0.9mm. Finally, the target localization error of digital angiography was 0.9${\pm}$0.4mm. The accuracy of diagnostic machines such as CT, MR, and angiography depended on their resolutions and distortions. The target localization error mainly depended on the resolution due to slice interval with CT and the image distortion as well as the resolution with MR However, in case of digital angiography, the target localization error was closely related to the distortion of fiducial markers. The results of our study should be considered when PTV (Planning Target Volume) was determined.

  • PDF

Effects of Gradient Switching Noise on ECD Source Localization with the EEG Data Simultaneously Recorded with MRI (MRI와 동시에 측정한 뇌전도 신호로 전류원 국지화를 할 때 경사자계 유발 잡음의 영향 분석)

  • Lee H. R.;Han J. Y.;Cho M. H.;Im C. H.;Jung H. K.;Lee S. Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 2003
  • Purpose : To evaluate the effect of the gradient switching noise on the ECD source localization with the EEG data recorded during the MRI scan. Materials and Methods : We have fabricated a spherical EEG phantom that emulates a human head on which multiple electrodes are attached. Inside the phantom, electric current dipole(ECD) sources are located to evaluate the source localization error. The EEG phantom was placed in the center of the whole-body 3.0 Tesla MRI magnet, and a sinusoidal current was fed to the ECD sources. With an MRI-compatible EEG measurement system, we recorded the multi channel electric potential signals during gradient echo single-shot EPI scans. To evaluate the effect of the gradient switching noise on the ECD source localization, we controlled the gradient noise level by changing the FOV of the EPI scan. With the measured potential signals, we have performed the ECD source localization. Results : The source localization error depends on the gradient switching noise level and the ECD source position. The gradient switching noise has much bigger negative effects on the source localization than the Gaussian noise. We have found that the ECD source localization works reasonably when the gradient switching noise power is smaller than $10\%$ of the EEG signal power. Conclusion : We think that the results of the present study can be used as a guideline to determine the degree of gradient switching noise suppression in EEG when the EEG data are to be used to enhance the performance of fMRI.

  • PDF

A of Radiation Field with a Developed EPID

  • Y.H. Ji;Lee, D.H.;Lee, D.H.;Y.K. Oh;Kim, Y.J.;C.K. Cho;Kim, M.S.;H.J. Yoo;K.M. Yang
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.67-67
    • /
    • 2003
  • It is crucial to minimize setup errors of a cancer treatment machine using a high energy and to perform precise radiation therapy. Usually, port film has been used for verifying errors. The Korea Cancer Center Hospital (KCCH) has manufactured digital electronic portal imaging device (EPID) system to verify treatment machine errors as a Quality Assurance (Q.A) tool. This EPID was consisted of a metal/fluorescent screen, 45$^{\circ}$ mirror, a camera and an image grabber and could display the portal image with near real time KIRAMS has also made the acrylic phantom that has lead line of 1mm width for ligh/radiation field congruence verification and reference points phantom for using as an isocenter on portal image. We acquired portal images of 10$\times$10cm field size with this phantom by EPID and portal film rotating treatment head by 0.3$^{\circ}$, 0.6$^{\circ}$ and 0.9$^{\circ}$. To check field size, we acquired portal images with 18$\times$18cm, 19$\times$19cm and 20$\times$20cm field size with collimator angle 0$^{\circ}$ and 0.5$^{\circ}$ individually. We have performed Flatness comparison by displaying the line intensity from EPID and film images. The 0.6$^{\circ}$ shift of collimator angle was easily observed by edge detection of irradiated field size on EPID image. To the extent of one pixel (0.76mm) difference could be detected. We also have measured field size by finding optimal threshold value, finding isocenter, finding field edge and gauging distance between isocenter and edge. This EPID system could be used as a Q.A tool for checking field size, light/radiation congruence and flatness with a developed video based EPID.

  • PDF

A Study on the Dose Distribution for Total Body Irradiation using Co-60 Teletherapy Unit (Co-60 Teletherapy Unit를 이용한 전신조사의 선량분포에 관한 고찰)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 1989
  • In recent years there has been a growing interest in total body, hemibody, total lymphoid irradiation. For refractory leukemia or lymphoma patients, various techniques and dose regimens were introduced, including high dose total body irradiation for destruction of leukemic or bone marrow cells and immunosuppression prior to bone marrow transplantation, and low dose total body irradiation for treatment of lymphocytic leukemia or lymphomas. Accurate provision for specified dose and the desired homogeneity are essential before clinical total body irradiation. Purposes of this paper are to discuss calibrating Cobalt Unit in 3m distance using Rando Phantom, to compare calculated dose, calibrated dose, and compensating filters for homogeneous dose distribution in the head and neck, the lung, and the pelvis. Results were following. 1. Measured dose on the lung was 6% higher than on the abdomen. Measured dose on the head (10%) and neck (18%) were higher than the abdomen because of thinness. Pelvic dose was measured 12% less than the abdomen. Those data suggest that compensating filter was essential. 2. Measured dose according to distance was 3% less than calculated dose which suggest that all doses in clinical use should be compared with calculated dose for minimizing error.

  • PDF