• Title/Summary/Keyword: Head of Pump

Search Result 317, Processing Time 0.024 seconds

Study for the Increase of Micro Regenerative Pump Head

  • Horiguchi, Hironori;Wakiya, Keisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.189-196
    • /
    • 2009
  • The effect of inlet and outlet blade angles on a micro regenerative pump head was examined in experiments. The pump head was little increased by changing the blade angles compared with the original pump with the inlet and outlet blade angles of 0 degree. The effect of the axial clearance between the impeller and the casing on the pump head was also examined. The head was increased largely by decreasing the axial clearance. The computation of the internal flow was performed to clarify the cause of the increase of the pump head due to the decrease of the clearance. The local flow rate in the casing decreased as the leakage flow rate through the axial clearance decreased due to the decrease of the clearance. It was found that the larger head in the smaller clearance was just caused by the smaller local flow rate in the casing. In the case of the smaller clearance, the smaller local flow rate caused the smaller circumferential velocity near the front and rear sides of the impeller. This caused the increase of the angular momentum in the casing and the head.

Effect of Volute Area Distributions on the Performance Characteristic Curve of a Centrifugal Pump (볼류트 단면적 변화가 원심펌프의 성능곡선에 미치는 영향)

  • Kim, Deok-Su;Lee, Kyoung-Young;Yoon, Joon-Yong;Choi, Young-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.558-563
    • /
    • 2005
  • In this paper, the effect of volute area distribution on the performance characteristic curve of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate, the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequency required. In order to control the shutoff head of a pump, several volute area distributions were proposed as a main parameter with the same impeller geometry. The calculation results show that the characteristic curve of a centrifugal pump can be controlled by modifying the area distribution with the same volute outlet area.

  • PDF

Effects of the Impeller Shapes on the Non-Clogging and the Screw-type Centrifugal Pump Performances (논클로그 및 스크류식 원심펌프의 임펠러 형상이 펌프성능에 미치는 영향)

  • Kim, Dong-Joo;Suh, Sang-Ho;Sung, Sun-Kyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.81-89
    • /
    • 1998
  • In this study, the effects of the impeller shapes on the pump performances of the non-clogging and the screw-type centrifugal pumps are experimentally studied. The characteristics of total head, efficiency and power of the non-clogging pump increase as the number of vanes increases. The screw-type centrifugal pump with the linear-shape vane shows a little better performance than that of the screw-type centrifugal pump with the curved-shape vane. The differences in the characteristics of total head, efficiency and power are, however, insignificant. Therefore, it is advisable that, considering the convenience of pump manufacturing, the screw-type centrifugal pump with the linear-shape vane should be used. This study also compares the pump characteristics of the non-clogging pump and screw-type centrifugal pump. The characteristics of total head and efficiency of the non-clogging pump are better than those of the screw-type centrifugal pump. The screw-type centrifugal pump requires more shaft power than the non-clogging pump.

  • PDF

A Numerical Study on the Effect of Volute Geometry on the Performance of Centrifugal Pump (볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Kim, Deok-Su;Jeon, Sang-Gyu;Yoon, Joon-Yong;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.44-49
    • /
    • 2006
  • In this study, the effects of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate, the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

A Numerical Study on the effect of Volute Geometry on the Performance of Centrifugal Pump (볼류트 형상이 원심 펌프의 성능에 미치는 영향에 대한 수치 해석적 연구)

  • Kim, Deok-Su;Choi, Young-Seok;Jeon, Sang-Gyu;Yoon, Joon-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.497-502
    • /
    • 2005
  • In this study. the effect of volute area distribution on the performance of a centrifugal pump were numerically studied using a commercial CFD code. To reduce the shutoff head, maintaining head and efficiency at a design flow rate. the flat head-capacity characteristic curves in which the head varies only slightly with capacity from shutoff to design capacity are frequently required. In order to control the shutoff head of a pump, several volute cross-sectional area distributions were proposed as a main parameter with the same impeller geometry. The calculation results show that the slope of the performance characteristic curve of the centrifugal pump can be controlled by modifying the area distribution from volute tongue to volute outlet with fixed volute outlet area and also varied volute outlet area.

  • PDF

Improvement of Performance Instability and Miniaturization of Very Low Specific Speed Centrifugal Pump (극저비속도 원심펌프의 불안정성능개선 및 소형화에 관한 연구)

  • Choi, Young-Do;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • The ratio of disk friction loss in a centrifugal pump is very large for the total pump loss in the range of very low specific speed. Therefore, impeller radius should be shortened to increase the pump efficiency because the disk friction loss is proportional to the fifth power of impeller radius. In order to compensate the decreased head by the shortened impeller radius, vane angle at impeller outlet should be increased. However, as the vane angle at impeller outlet becomes larger, performance instability occurs at low flow rate regions. In this study, J-Groove is adopted to suppress the performance instability and detailed examination is performed for the influence of the J-Groove on the pump performance. The results show that J-Groove gives good effect on the suppression of performance instability. Moreover, as J-Groove increases pump head considerably, the pump size can be smaller for head requirements.

Effect of The Impeller Discharge Angle on the Performance of a Spurt Vacuum Pump

  • Lee, Ji-Gu;Kim, Youn-Jea
    • Applied Science and Convergence Technology
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The spurt vacuum pump is widely used to transfer sludge and slurry, and to control flow rate in a variety of processing fields, such as the oil, chemical, and fiber industries. The efficiency of the pump depends on the design parameters of the impeller, such as the number of blades, and the blade angle. In this study, the effect of the configuration of the impeller discharge angle of a spurt vacuum pump, which influences total head, shaft power, and efficiency, was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. In addition, the performance of the pump was evaluated on the basis of the correlations between the total head, pump efficiency, and pressure distribution.

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.

Development of Pump/Motor Selection Program for Optimized Pump Decision of the Regional Water Supply Facilities (광역상수도용 펌프의 최적결정을 위한 펌프/모터 선정 프로그램 개발)

  • Roh, Hyung-Woon;Kim, Jae-Soo;Park, Gil-Moon;Suh, Sang-Ho;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.171-176
    • /
    • 2001
  • The Pump/Motor Selection Program for optimized selection of regional water supply facilities was developed based on a flowchart compiled from basic operational data, total head requirement, initial pump/motor specification selection etc.. This program was developed in Visual Basic. The program accepts, as in the flowchart, operational requirements of pumps and other system requirements and calculates specific speed based on flow rate, total head and na Then the calculated specific speed is used to select pump types and rpm Prior to determining likelihood of cavitation occurring at the calculated NPSH. Power requirement is then calculated for safe operation of pump to assist final pump selection. Test results of the program matches very closely to the design values of Paldang intake pump station(3rd stage) proving that the program can be used as an effective and practical aid for designing new regional water supply systems.

  • PDF

A Study on the Numerical Prediction of Cavitation In a Centrifugal Pump (원심펌프 내부의 캐비테이션 수치예측에 관한 연구)

  • Mo, J.O.;Kang, S.J.;Kang, H.K.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.335-338
    • /
    • 2006
  • A Numerical study of the cavitation within a centrifugal pump is carried out using CFD commercial code, FLUENT. The objective of this study is to predict the onset of cavitation within the pump blade and the degradation in the pressure rise due to the generation and transport of vapor. A pump designed for the study is a six bladed, one-circular arc impeller design suggested by A.J. Stepanoff et al. The Steady-state calculations are performed for a wide range of flow rate without the cavitation to investigate the pump performance. The design head and efficiency show a very good agreement with the numerical results at the design flow rate. After the validation with the numerical results, the pump performance and the onset of cavitation within the blade is predicted by changing NPSH at the design flow rate.

  • PDF