• 제목/요약/키워드: Head loss & discharge

검색결과 35건 처리시간 0.221초

각종 송출 호오스의 구경 및 길이가 농용양수로의 소요동력에 미치는 영향 (Influence of Flowing Velocity and Length of Delivery Hoses on Power Requirement of Agricultural pump.)

  • 김기대;김성래;이한만
    • Journal of Biosystems Engineering
    • /
    • 제4권2호
    • /
    • pp.46-52
    • /
    • 1979
  • The water delivery hose for agricultural pump is getting popular in rural areas in korea. Friction head loss, discharge, and power requirements were measured in various discharge for different material and diameter of hose to get basic data for economical use in agricultural pump. The results attained in this study were as follows ; 1. Friction head loss increased significantly as the velocity increased, and the difference of velocity between the different diameter of hose was bigger than that between materials, which was resulted in the increase of the friction head loss. 2. Friction head loss in the case of that the velocity with 2m/sec was constant was about 3.53 to 4.01 m/100m in the diameter 3" and about 2.30 to 3.10 m/100m in the diameter 4". Material A of diameter 3" showed the maximum value 8.4m/100m in Reynolds number $2.0\times10^5$, 4" got the minimum value 2.24m/100m, the difference between these values was bigger than 6m per 100 meters in the friction head loss. 3. Darcy-Weisbach formular with friction coefficient [f] calculated by Nikurades formular in the smooth pipe or with friction coefficient [f] calculated on the base of C value 125 in Hazen-Williams formular was available in friction head loss of the water discharger hose in rural areas. 4. Total head increased as friction head loss increased , meanwhile total discharge decreased, and 20 percents of energy was more saved in Material C 4″pipe than Material A 3″pipe in the view point from the discharge per unit power requirement, this phenomenon suggested that long distance pipe would be advantage in larger diameter pipe for save of energy. for save of energy.

  • PDF

유입유량 변화를 고려한 과부하 4방향 사각형 합류맨홀에서의 손실계수 산정식 개발 (Development of head loss coefficient formula at surcharged four-way combining square manhole with variation of inlet flow)

  • 조준범;김정수;윤세의
    • 한국수자원학회논문집
    • /
    • 제50권12호
    • /
    • pp.877-887
    • /
    • 2017
  • 도시유역의 중 하류부에 주로 설치되는 4방향 합류맨홀에서 과부하 흐름에 의한 에너지 손실은 도심지 침수피해를 가중시키는 주요 원인이다. 과부하 4방향 합류맨홀에는 유입관의 유입조건에 따라 흐름 양상이 크게 변화되며, 중간맨홀 뿐만 아니라 3방향(T형) 합류맨홀의 흐름조건을 구성한다. 그러므로 유입관의 유입유량 변화에 따른 과부하 4방향 합류맨홀의 에너지 손실 변화 분석 및 손실계수 산정이 필요하다. 본 연구에서는 하수도시설기준을 준용하여 맨홀직경 및 관경을 1/5로 축소 한 수리실험 장치를 제작하였다. 과부하 사각형 4방향 합류맨홀에서 유입관의 유입유량비 변화에 따른 손실계수를 산정하기 위하여 유입관(주 유입관 및 양측면 유입관)의 유입유량비를 10% 간격으로 변화시켜 다양한 유량조건(40 case)을 선정하였다. 실험 결과 중간맨홀에서 0.40의 가장 낮은 손실계수가, $90^{\circ}$ 접합맨홀에서 1.58의 가장 높은 손실계수가 산정되었다. 또한 합류맨홀(T형, 4방향)의 경우 측면 유입유량이 한쪽으로 편향될수록 보다 큰 손실계수를 나타냈다. 유입관의 유입유량 조건 변화에 따른 손실계수를 산정하여 손실계수 범위도를 작도하였으며, 과부하 사각형 4방향 합류맨홀에서 모든 흐름조건을 고려할 수 있는 손실계수 산정식을 제시하였다. 제시된 산정식은 유입관의 유입유량이 변화하는 배수시스템의 설계 및 검증에 적용이 가능할 것으로 판단된다.

직사각형 맨홀의 내부형상변화에 따른 흐름특성 분석 (An Analysis of Flow Characteristics with Changing the Inside Shapes in Square Manhole)

  • 장석진;윤영노;김정수;윤세의
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.199-202
    • /
    • 2007
  • In storm sewer networks a lot of manholes are installed to maintain and connect a sewer of urban area. There are some shapes of manhole such as circular type, square type, and so on. Square shape manholes are installed to connect the large diameter drainage pipes in general and have lager head losses than circular one. Consequently, it is important to analyze the head losses in square manhole because the head losses in square manhole are much bigger than the friction losses in pipes. Hydraulic experimental apparatus which can be changed the inside shape in square manhole was installed for this study. The experimental discharge was $16{\ell}/sec$. The head loss coefficients in the manhole were calculated by the experimental results. The range of head loss coefficients in the general square manhole were from 0.33 to 0.48 and the range of head loss coefficients in the square manhole changed inside shape were from 0.23 to 0.28.

  • PDF

과부하 90° 접합맨홀의 배수능력 증대에 관한 실험 연구 (An Experimental Study for Drainage Capacity Increment at Surcharged Manholes with a 90° Bend)

  • 김정수;송주일;윤세의
    • 상하수도학회지
    • /
    • 제23권4호
    • /
    • pp.447-458
    • /
    • 2009
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban areas. Therefore, it is necessary to analyze head loss at manholes, especially in case of surcharged flow. Hydraulic experiments were conducted with three cases. Case A is to test whether the shapes of the manholes influence head loss coefficients. Case B and C were proposed to further reduce head losses by improving the manhole hydraulic efficiency. In case B, the joining part of the pipe at both shapes of manholes is shifted from central part to side part. The test in case C is to check the average head loss coefficient by installing the side benching in square manhole, based on shifted joining part model. The average head loss coefficient for circular and square manhole on case A was 1.6. This did not show much difference of the head loss coefficients in spite of the discharge variation in this case. However, case B and C show large difference between head loss coefficients due to the strong oscillation of water surface and the horizontal swirl motion. The circular and square manholes in case B reduced the head loss by 30% and 6% than ones in case A, respectively. The average head loss coefficient for circular manhole in case B was 1.1. Case C reduced average loss coefficients of the square manhole in case A from 1.6 to 1.1. Accordingly, the circular manhole in case B and the square manhole in case C showed the effective way to reduce the head loss. These head loss coefficients could be available to apply to the urban sewer system with surcharged flow.

과부하 사각형 맨홀의 배수능력 증대에 관한 실험적 연구 (An Experimental Study for Drainage Capacity Increment at Surcharged Square Manholes)

  • 김정수;송주일;윤세의
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.619-625
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at square manholes is usually not significant. However, the energy loss at surcharged manholes is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharged flow. Hydraulic experimental apparatus which can change the manhole inner profile(CASE I, II, III, and IV) and the invert types(CASE A, B, C) were installed for this study. The experimental discharge was $16{\ell}/sec$. As the ratio of b/D(manhole width/inflow pipe diameter) increases, head loss coefficient increases due to strong horizontal swirl motion. The head loss coefficients for CASE I, II, III, and IV were 0.46, 0.38, 0.28 and 0.37, respectively. Side covers increase considerably drainage capacity at surcharged square manhole when the ratio of d/D(side cover diameter/inflow pipe diameter) was 1.0. The head loss coefficients for CASE A, B, and C were 0.45, 0.37, and 0.30, respectively. Accordingly, U-invert is the most effective for energy loss reduction at surcharged square manhole. This head loss coefficients could be available to evaluate the urban sewer system with surcharged flow.

과부하 맨홀의 손실계수를 고려한 도시지역 침수해석 (Inundation Analysis in Urban Area Considering of Head Loss Coefficients at Surcharged Manholes)

  • 이원;김정수;윤세의
    • 한국수자원학회논문집
    • /
    • 제48권2호
    • /
    • pp.127-136
    • /
    • 2015
  • 일반적으로 XP-SWMM은 맨홀을 하나의 절점으로 간주하여 절점의 형상과 크기에 따른 국부손실의 영향을 고려하지 못하기 때문에 침수면적을 과소 산정한다. 그러므로 과부하 맨홀 내에서의 손실계수를 고려한 해석 방안 및 손실계수의 적용에 따른 침수해석에 관한 연구가 필요하다. 본 연구에서는 유량변화 및 맨홀 형상 변화에 따른 수리실험을 실시하여, 과부하 맨홀(원형, 사각형)에서의 손실계수를 각각 0.61과 0.68로 산정하였다. 또한 XP-SWMM을 이용하여 군자배수분구를 대상으로 산정된 손실계수의 적용 유무에 따른 침수면적의 변화특성을 분석하였다. 분석 결과 손실계수를 적용하면 침수면적이 3.5ha 증가하는 것으로 나타났다. 이는 손실계수 적용에 따라서 맨홀에서의 월류량이 증가하기 때문이다. 대상유역에 손실계수를 적용하였을 경우 실제 침수면적과의 일치율은 약 58%로 나타났으며, 손실계수를 고려하지 않았을 경우의 일치율은 약 40%로 나타났다. 그러므로 과부하 맨홀에서의 손실계수를 고려한 2차원 침수해석의 결과는 도시지역의 침수 위험지역을 정확하게 파악하기 위한 기초적인 자료로 활용이 가능할 것으로 판단된다.

유체동압베어링을 사용하는 하드 디스크 드라이브 스핀들 시스템에서 발생하는 정전기 방전에 관한 실험적 연구 (Experiental Study on the Electrostatic Discharge in the HDD Spindle System Using Fluid Dynamic Bearings)

  • 강민구;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.318-323
    • /
    • 2005
  • This paper introduces the mechanism of the ESD (Electrostatic discharge) in the HDD spindle system using FDBs (Fluid Dynamic Bearings). When a HDD (Hard Disk Drive) spindle system is rotating, triboelectric charging occurs in the FDBs through the friction of the lubricant between the rotating shaft and stationary sleeve. And this electrostatic charge is accumulated in the rotating part of the HDD spindle system because it is insulated from the ground by the lubricant. This research shows experimentally that the behavior of electric charge and discharge in the FDB spindle system is the same as that of a capacitor. It also measures the electrostatic charge and discharge of the FDB spindle system due to the chanse of humidity, supporting load and motor speed. This research shows that the control of ESD is required in the HDD spindle system using FDBs, because the electrostatic charge accumulated in the FDB spindle system may cause the breakdown damage of the GMR head and data loss consequently.

  • PDF

장대관로를 이용한 소수력 발전량 향상을 위한 설계요소에 관한 연구 (A Study of Design factors for Increasing Energy Production in Small Hydro power with Using Long Pipe)

  • 김현한;김광호
    • 전기학회논문지
    • /
    • 제63권8호
    • /
    • pp.1134-1139
    • /
    • 2014
  • Recently the need for renewable energy development is expanding due to the global climate change, the environmental issues and the limited fossil energy resources. Dependence of energy on overseas is high in Korea. To resolve the environmental problems and to improve the energy independence rate, the development of renewable energy is more required. The small hydro power, one of the renewable energy resources, has been developing and operating from a long time ago. If we are new developing a small hydro power with the use existing dams and reservoirs, we will design the length of inlet pipe and the diameter suitable for it. However, in case of using the existing water supply pipe which had been designed suitable for water service, the designer has to review and check that the pipe is suitable for operating a generator. In this paper, the design of small hydro power using the existing long pipe of water supply, we suggest the optimum way to reduce the water hammer in pipe which causes the unsteady flow during the load-shutdown of generator, the generator operation plan for the stable supply of water and the design factor of determining the generator capacity through the analysis between discharge and head-loss.

압력용기로부터 압력방출장치를 통한 가스 방출에 관한 포괄적 고찰 (Comprehensive Consideration on the Discharge of Gases from Pressurized Vessels through Pressure Relief Devices)

  • 정창복
    • 한국안전학회지
    • /
    • 제35권6호
    • /
    • pp.32-45
    • /
    • 2020
  • The problem of determining the discharge rates of gases from pressurized vessels through pressure relief devices was dealt with comprehensively. First, starting from basic fluid flow equations, detailed modeling procedures were presented for isentropic nozzle flows and frictional flows in a pipe, respectively. Meanwhile, physical explanations were given to choking phenomena in terms of the acoustic velocity, elucidating the widespread use of Mach numbers in gas flow models. Frictional flows in a pipe were classified into adiabatic, isothermal, and general flows according to the heat transfer situation around the pipe, but the adiabatic flow model was recommended suitable for gas discharge through pressure relief devices. Next, for the isentropic nozzle flow followed by adiabatic frictional flow in the pipe, two equations were established for two unknowns that consist of the Mach numbers at the inlet and outlet of the pipe, respectively. The relationship among the ratio of downstream reservoir pressure to upstream pressure, mass flux, and total frictional loss coefficient was shown in various forms of MATLAB 2-D plot, 3-D surface plot and contour plot. Then, the profiles of gas properties and velocity in the pipe section were traced. A method to quantify the relationship among the pressure head, velocity head, and total friction loss was presented, and was used in inferring that the rapid increase in gas velocity in the region approaching the choked flow at the pipe outlet is attributed to the conversion of internal energy to kinetic energy. Finally, the Levenspiel chart reproduced in this work was compared with the Lapple chart used in API 521 Standatd.

가용합금형 스프링클러 헤드의 열감도 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Thermal Sensitivity for Fusible Alloy Type Sprinkler Head)

  • 권오승;이진호
    • 한국화재소방학회논문지
    • /
    • 제9권1호
    • /
    • pp.20-29
    • /
    • 1995
  • The sprinkler head is a component of the sprinkler system intended to discharge water for automatic detection and extinguishment of fires. On this study, thermal characteristic values affecting the sensitivity of the fusible alloy type sprinkler head were obtained and analyzed under heated air stream condition which had constant temperature and velocity. The experiment was carried out under the forced convection condition with both the conductive heat loss considered and neglected. The thermal characteristic values of the sprinkler head were obtained in accordance with the material and shape of the heat responsive element and the conditions of the main body.

  • PDF