• Title/Summary/Keyword: Head Vibration

Search Result 334, Processing Time 0.022 seconds

Development of Two-Dimensional Scanning Videokymography for Analysis of Vocal Fold Vibration

  • Wang, Soo-Geun;Lee, Byung-Joo;Lee, Jin-Choon;Lim, Yun-Sung;Park, Young Min;Park, Hee-June;Roh, Jung-Hoon;Jeon, Gye-Rok;Kwon, Soon-Bok;Shin, Bum-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.24 no.2
    • /
    • pp.107-111
    • /
    • 2013
  • Objectives : We developed two-dimensional (2D) scanning videokyomography to evaluate the mucosal wave of whole vocal cords in real time to overcome the limit of preexisting stroboscopy and line scanning videokymography which could not evaluate it. Methods : We implemented a continuous light source with high brightness, a high-definition CMOS camera, and capture board for saving the data. We created the software program to analyze the image data from the system. The test of the functionality of the 2D scanning videokymography camera was performed in one of the authors (P.H.J 32 years old male). Vocal cord images were obtained during normal phonation and falsetto phonation. Images were obtained also during cough, diplophonia. Results : The system made it possible to measure objective parameters, including fundamental frequency, amplitude, regularity, mucosal wave, and phase difference, medial and lateral peak, opening versus closing duration related to vocal fold vibration. Simultaneously, it enabled analysis of the whole mucosal wave of the entire vocal fold in real time. 2D scanning videokymography was also effective for evaluating the dynamic status of the vocal fold when the subject phonated aperiodic voice. Conclusion : In conclusion, 2D scanning videokymography can support the analysis of the whole mucosal wave of the entire vocal cord with objective vocal parameters, overcoming the limitations of stroboscopy and previous line scanning videokymography techniques.

  • PDF

Design of Large Multi-Electromagnetic Shaking System (대형 멀티 전자기 가진 시스템 설계)

  • Im, Jong-Min;Moon, Sang-Moo;Eun, Hee-Kwang;Choi, Seok-Weon;Choi, Joon-Min
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.76-81
    • /
    • 2008
  • The vibration test system of satellite environment test dept. has been used successfully for the vibration tests of a majority of korean space programs. To meet the recent needs of large size test facility available for the vibrational tests of the huge launch vehicles and satellites, KARI have developed the large size multi-electromagnetic shaking system with $3{\times}3m$ head expander system. The new system will consist of three electromagnetic shakers which has 160 kN thrust force individually, and be able to sustain up to 8 tons test load and 300 kNm overturing moment. This paper describes the design components in the development process of multi-excitation shaker system.

  • PDF

Shock Vibration Control of Hard-Disk Drive Using Coupled Shock Spectrum Analysis in Time-Frequency Domain (시간-주파수 영역에서의 연성 충격 스펙트럼 분석을 통한 하드디스크 드라이브의 충격진동 제어 (현장개발사례: SAMSUNG HDD 'SPINPOINT V40/P40 SERIES'))

  • Han, Yun-Sik;Kang, Seong-Woo;Oh, Dong-Ho;Hwang, Tae-Yeon;Son, Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1111-1116
    • /
    • 2001
  • A transient T-F(time-frequency) signal processing technique is applied to a tilt drop and a linear shock test rigs for identification of shock characteristics of hard disk drive (HDD). The T-F technique essentially tracks the shock characteristics of pivot point response as well as head slap and lift-off phenomena. From the T-F analysis result, the shock characteristic in HDD is modeled by the two degree of freedom coupled-dynamic system, which consists of actuator arm and suspension. As shock designing tool, the maximax shock response spectrum is employed for prediction of shock performance. Finally, the shock control technique is tested with newly designed actuator arm and suspension. Experimental head slap test result shows that the shock performance is much higher with the new shockproof designed model than the current model

  • PDF

Servo Track Writing for Ultra-High TPI Disk Drive in Low Density Medium Condition (초고밀도 디스크 드라이브를 위한 저밀도 작동 환경에서 서보 트랙 기록 방법에 대한 연구)

  • 한윤식;김철순;강성우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.736-741
    • /
    • 2004
  • In high-capacity disk drives with ever-growing track density, the allowable level of position error signal (PES) is becoming smaller and smaller. In order to achieve the high TPI disk drive, it is necessary to improve the writing accuracy during the STW(servo track writing) process through the reduction of TMR sources. Among the main contributors of the NRRO(Non-Repeatable Run-out) PES, the disk vibration and the HSA(head-stack assembly) vibration is considered to be one of the most significant factors. Also the most contributors of RRO(Repeatable Run- out) come from the contributors of NRRO which is written-in at the time of STW(servo track writing) process. In this paper, the experimental test result shows that the effect of NRRO on servo written-in RRO effectively can be reduced through a STW process under low dense medium condition such as semi-vacuum.

  • PDF

Forced Vibration Analysis of the Hard Disk Drive Spindle Systems (하드디스크 드라이브 회전축계의 강제진동해석)

  • Lim, Seung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1601-1608
    • /
    • 2000
  • This paper is concerned with the forced flexural vibration analysis of hard disk drive (HDD) spindle systems with multiple thin disks, supported by two ball bearings based on the finite element model. This is the extension of the previous work which analytically modeled every system component taking into account its structural flexibility and also the centrifugal stiffening effect especially for the disks. Among the end results, the forced time response is expectedly useful for the vibration control of the spindle itself or the position servo control of the magnetic head. On the other hand, the steady state responses such as the frequency response function and the unbalance response are useful for system identification. Futhermore, through a coordinate transformation the equations of motion is also derived with respect to the inertial frame for convenient analyses of certain classes.

  • PDF

Chronic Subdural Hematoma after Eccentric Exercise Using a Vibrating Belt Machine

  • Park, Hey-Ran;Lee, Kyeong-Seok;Bae, Hack-Gun
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.3
    • /
    • pp.265-267
    • /
    • 2013
  • We report a case of bilateral chronic subdural hematoma (CSDH) in a 75-year-old man after exercise using a vibrating belt machine on the head. He suffered from headache and intermittent left side numbness for ten days. He denied any head injuries except eccentric exercise using a vibrating belt on his own head for 20 days. An MRI revealed bilateral CSDH. The hematoma was isodense on the CT scan. We made burr-holes on the both sides under local anesthesia. We identified the neomembrane and dark red subdural fluid on both sides. In the postoperative CT scan, we found an arachnoid cyst on the left temporal pole. Although the arachnoid cyst itself is asymptomatic, trivial injury such as vibrating the head may cause a CSDH.

Study on Fiber Polarimetric Vibration Sensor Based on Polarization-Maintaining Photonic Crystal Fiber (편광유지 광자결정 광섬유 기반 편광 간섭형 진동 센서)

  • Kim, Young-Suk;Park, Kyongsoo;Lee, Yong Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.13-18
    • /
    • 2015
  • In this paper, we implemented a polarimetric vibration sensor using a Sagnac birefringence interferometer composed of polarization-maintaining photonic crystal fiber(PM-PCF). By changing the amplitude and frequency of vibration applied to PM-PCF employed as the sensor head of the proposed sensor, sensor responses to various types of vibration were investigated. First, the vibration characteristic of the sensor was explored for a single frequency in a frequency range from 1 to 3000Hz with a cylindrical piezoelectric transducer, and then the sensor response to naturally damped vibration was examined by utilizing a metal cantilever. It was experimentally observed that the sensor output signal was deteriorated by more than 3dB at ~1900Hz in the single frequency vibration measurement with a minimum detectable strain perturbation of ${\sim}1.34n{\varepsilon}/Hz^{1/2}$ at 1500Hz and the peak value of the sensor output signal was proportional to the strength of initially applied stress in the naturally damped vibration measurement.

On the Calibration of Impact Hammer Sensitivity (충격 해머의 感度補正)

  • 한상보
    • Journal of KSNVE
    • /
    • v.1 no.2
    • /
    • pp.115-120
    • /
    • 1991
  • The impact hammer is extensively used in experimental modal analysis as a means to provide force over a broad range of frequencies. The hammer mass and the impact head are often changed to achieve a desired impact time duration with its corresponding input frequency spectrum, these mass changes affect the performance and sensitivity of the force transducer employed to measure the impact force. Both a mathematical model describing the effects of impact head and hammer mass on the performance of the force transducer and experimental verification of this model are presented here.

  • PDF

Head-Disk Interface : Migration from Contact-Start-Stop to Load/Unload

  • Suk, Mike
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.643-651
    • /
    • 1999
  • A brief description of the current technology (contact-start-stop) employed in most of today's hard disk drive is presented. The dynamics and head/disk interactions during a start/stop process are very complicated and no one has been able to accurately model the interactions. Thus, the head/disk interface that meets the start/stop durability and stiction requirements are always developed statistically. In arriving at a solution. many sets of statistical tests are run by varying several parameters. such as, the carbon overcoat thickness. lubricant thickness. disk surface roughness, etc. Consequently, the cost associated III developing an interface could be significant since the outcome is difficult to predict. An alternative method known as Load/Unload technology alters the problem set. such that. the start/stop performance can be designed in a predictable manner. Although this techno¬logy offers superior performance and significantly reduces statistical testing time, it also has some potential problems. However. contrary to the CSS technology. most of the problems can be solved by design and not by trial and error. One critical problem is that of head/disk contacts during the loading and unloading processes. These contact can cause disk and slider damage because the contacts are likely to occur at high disk speeds resulting in large friction forces. Use of glass substrate disks also may present problems if not managed correctly. Due to the low thermal conductivity of glass substrates. any head/disk contacts may result in erasure due to frictional heating of the head/disk interface. In spite of these and other potential problems. the advantage with L/UL system is that these events can be understood. analyzed. and solved in a deterministic manner.

  • PDF

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.