• Title/Summary/Keyword: Head Pose Estimation

Search Result 42, Processing Time 0.03 seconds

Facial Behavior Recognition for Driver's Fatigue Detection (운전자 피로 감지를 위한 얼굴 동작 인식)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.756-760
    • /
    • 2010
  • This paper is proposed to an novel facial behavior recognition system for driver's fatigue detection. Facial behavior is shown in various facial feature such as head expression, head pose, gaze, wrinkles. But it is very difficult to clearly discriminate a certain behavior by the obtained facial feature. Because, the behavior of a person is complicated and the face representing behavior is vague in providing enough information. The proposed system for facial behavior recognition first performs detection facial feature such as eye tracking, facial feature tracking, furrow detection, head orientation estimation, head motion detection and indicates the obtained feature by AU of FACS. On the basis of the obtained AU, it infers probability each state occur through Bayesian network.

Stereo-based Robust Human Detection on Pose Variation Using Multiple Oriented 2D Elliptical Filters (방향성 2차원 타원형 필터를 이용한 스테레오 기반 포즈에 강인한 사람 검출)

  • Cho, Sang-Ho;Kim, Tae-Wan;Kim, Dae-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.600-607
    • /
    • 2008
  • This paper proposes a robust human detection method irrespective of their pose variation using the multiple oriented 2D elliptical filters (MO2DEFs). The MO2DEFs can detect the humans regardless of their poses unlike existing object oriented scale adaptive filter (OOSAF). To overcome OOSAF's limitation, we introduce the MO2DEFs whose shapes look like the oriented ellipses. We perform human detection by applying four different 2D elliptical filters with specific orientations to the 2D spatial-depth histogram and then by taking the thresholds over the filtered histograms. In addition, we determine the human pose by using convolution results which are computed by using the MO2DEFs. We verify the human candidates by either detecting the face or matching head-shoulder shapes over the estimated rotation. The experimental results showed that the accuracy of pose angle estimation was about 88%, the human detection using the MO2DEFs outperformed that of using the OOSAF by $15{\sim}20%$ especially in case of the posed human.

Back-Propagation Neural Network Based Face Detection and Pose Estimation (오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정)

  • Lee, Jae-Hoon;Jun, In-Ja;Lee, Jung-Hoon;Rhee, Phill-Kyu
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.853-862
    • /
    • 2002
  • Face Detection can be defined as follows : Given a digitalized arbitrary or image sequence, the goal of face detection is to determine whether or not there is any human face in the image, and if present, return its location, direction, size, and so on. This technique is based on many applications such face recognition facial expression, head gesture and so on, and is one of important qualify factors. But face in an given image is considerably difficult because facial expression, pose, facial size, light conditions and so on change the overall appearance of faces, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact face detection which overcomes some restrictions by using neural network. The proposed system can be face detection irrelevant to facial expression, background and pose rapidily. For this. face detection is performed by neural network and detection response time is shortened by reducing search region and decreasing calculation time of neural network. Reduced search region is accomplished by using skin color segment and frame difference. And neural network calculation time is decreased by reducing input vector sire of neural network. Principle Component Analysis (PCA) can reduce the dimension of data. Also, pose estimates in extracted facial image and eye region is located. This result enables to us more informations about face. The experiment measured success rate and process time using the Squared Mahalanobis distance. Both of still images and sequence images was experimented and in case of skin color segment, the result shows different success rate whether or not camera setting. Pose estimation experiments was carried out under same conditions and existence or nonexistence glasses shows different result in eye region detection. The experiment results show satisfactory detection rate and process time for real time system.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Design and Evaluation of Intelligent Helmet Display System (지능형 헬멧시현시스템 설계 및 시험평가)

  • Hwang, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.417-428
    • /
    • 2017
  • In this paper, we describe the architectural design, unit component hardware design and core software design(Helmet Pose Tracking Software and Terrain Elevation Data Correction Software) of IHDS(Intelligent Helmet Display System), and describe the results of unit test and integration test. According to the trend of the latest helmet display system, the specifications which includes 3D map display, FLIR(Forward Looking Infra-Red) display, hybrid helmet pose tracking, visor reflection type of binocular optical system, NVC(Night Vision Camera) display, lightweight composite helmet shell were applied to the design. Especially, we proposed unique design concepts such as the automatic correction of altitude error of 3D map data, high precision image registration, multi-color lighting optical system, transmissive image emitting surface using diffraction optical element, tracking camera minimizing latency time of helmet pose estimation and air pockets for helmet fixation on head. After completing the prototype of all system components, unit tests and system integration tests were performed to verify the functions and performance.

The Estimation of Craniovertebral Angle using Wearable Sensor for Monitoring of Neck Posture in Real-Time (실시간 목 자세 모니터링을 위한 웨어러블 센서를 이용한 두개척추각 추정)

  • Lee, Jaehyun;Chee, Youngjoon
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.278-283
    • /
    • 2018
  • Nowdays, many people suffer from the neck pain due to forward head posture(FHP) and text neck(TN). To assess the severity of the FHP and TN the craniovertebral angle(CVA) is used in clinincs. However, it is difficult to monitor the neck posture using the CVA in daily life. We propose a new method using the cervical flexion angle(CFA) obtained from a wearable sensor to monitor neck posture in daily life. 15 participants were requested to pose FHP and TN. The CFA from the wearable sensor was compared with the CVA observed from a 3D motion camera system to analyze their correlation. The determination coefficients between CFA and CVA were 0.80 in TN and 0.57 in FHP, and 0.69 in TN and FHP. From the monitoring the neck posture while using laptop computer for 20 minutes, this wearable sensor can estimate the CVA with the mean squared error of 2.1 degree.

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

Point Pattern Matching Based Global Localization using Ceiling Vision (천장 조명을 이용한 점 패턴 매칭 기반의 광역적인 위치 추정)

  • Kang, Min-Tae;Sung, Chang-Hun;Roh, Hyun-Chul;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1934-1935
    • /
    • 2011
  • In order for a service robot to perform several tasks, basically autonomous navigation technique such as localization, mapping, and path planning is required. The localization (estimation robot's pose) is fundamental ability for service robot to navigate autonomously. In this paper, we propose a new system for point pattern matching based visual global localization using spot lightings in ceiling. The proposed algorithm us suitable for system that demands high accuracy and fast update rate such a guide robot in the exhibition. A single camera looking upward direction (called ceiling vision system) is mounted on the head of the mobile robot and image features such as lightings are detected and tracked through the image sequence. For detecting more spot lightings, we choose wide FOV lens, and inevitably there is serious image distortion. But by applying correction calculation only for the position of spot lightings not whole image pixels, we can decrease the processing time. And then using point pattern matching and least square estimation, finally we can get the precise position and orientation of the mobile robot. Experimental results demonstrate the accuracy and update rate of the proposed algorithm in real environments.

  • PDF

Human Skeleton Keypoints based Fall Detection using GRU (PoseNet과 GRU를 이용한 Skeleton Keypoints 기반 낙상 감지)

  • Kang, Yoon Kyu;Kang, Hee Yong;Weon, Dal Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 2021
  • A recent study of people physically falling focused on analyzing the motions of the falls using a recurrent neural network (RNN) and a deep learning approach to get good results from detecting 2D human poses from a single color image. In this paper, we investigate a detection method for estimating the position of the head and shoulder keypoints and the acceleration of positional change using the skeletal keypoints information extracted using PoseNet from an image obtained with a low-cost 2D RGB camera, increasing the accuracy of judgments about the falls. In particular, we propose a fall detection method based on the characteristics of post-fall posture in the fall motion-analysis method. A public data set was used to extract human skeletal features, and as a result of an experiment to find a feature extraction method that can achieve high classification accuracy, the proposed method showed a 99.8% success rate in detecting falls more effectively than a conventional, primitive skeletal data-use method.

Driver Assistance System for Integration Interpretation of Driver's Gaze and Selective Attention Model (운전자 시선 및 선택적 주의 집중 모델 통합 해석을 통한 운전자 보조 시스템)

  • Kim, Jihun;Jo, Hyunrae;Jang, Giljin;Lee, Minho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.115-122
    • /
    • 2016
  • This paper proposes a system to detect driver's cognitive state by internal and external information of vehicle. The proposed system can measure driver's eye gaze. This is done by concept of information delivery and mutual information measure. For this study, we set up two web-cameras at vehicles to obtain visual information of the driver and front of the vehicle. We propose Gestalt principle based selective attention model to define information quantity of road scene. The saliency map based on gestalt principle is prominently represented by stimulus such as traffic signals. The proposed system assumes driver's cognitive resource allocation on the front scene by gaze analysis and head pose direction information. Then we use several feature algorithms for detecting driver's characteristics in real time. Modified census transform (MCT) based Adaboost is used to detect driver's face and its component whereas POSIT algorithms are used for eye detection and 3D head pose estimation. Experimental results show that the proposed system works well in real environment and confirm its usability.