• 제목/요약/키워드: Head Pose Estimation

검색결과 42건 처리시간 0.03초

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

원형관로 영상을 이용한 관로주행 로봇의 자세 추정 (Robot Posture Estimation Using Circular Image of Inner-Pipe)

  • 윤지섭;강이석
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권6호
    • /
    • pp.258-266
    • /
    • 2002
  • This paper proposes the methodology of the image processing algorithm that estimates the pose of the inner-pipe crawling robot. The inner-pipe crawling robot is usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose of defects on the pipe wall and/or the maintenance operation. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light from the inner wall of the pipe vary with the robot posture and the camera. The proposed algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot . Based on the fact that the vanishing point of the reflected light moves into the opposite direction from the camera rotation, the camera rotation angle can be estimated. And, based on the fact that the most bright parts of the reflected light moves into the same direction with the camera translation, the camera position most bright parts of the reflected light moves into the same direction with the camera translation, the camera position can be obtained. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

Real-time Human Pose Estimation using RGB-D images and Deep Learning

  • 림빈보니카;성낙준;마준;최유주;홍민
    • 인터넷정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.113-121
    • /
    • 2020
  • Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.

Robust pupil detection and gaze tracking under occlusion of eyes

  • Lee, Gyung-Ju;Kim, Jin-Suh;Kim, Gye-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권10호
    • /
    • pp.11-19
    • /
    • 2016
  • The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.

인체 자세 추정을 위한 다중 해상도 디컨볼루션 출력망 (Multi-Scale Deconvolution Head Network for Human Pose Estimation)

  • 강원준;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.68-71
    • /
    • 2020
  • 최근 딥러닝을 이용한 인체 자세 추정(human pose estimation) 연구가 활발히 진행되고 있다. 그 중 구조가 간단하면서도 성능이 강력하여 널리 사용되고 있는 딥러닝 네트워크 모델은 이미지 분류(image classification)에 사용되는 백본 네트워크(backbone network)와 디컨볼루션 출력망(deconvolution head network)을 이어 붙인 구조를 갖는다[1]. 기존의 디컨볼루션 출력망은 디컨볼루션 층을 쌓아 낮은 해상도의 특징맵을 모두 높은 해상도로 변환한 후 최종 인체 자세 추정을 하는데 이는 다양한 해상도에서 얻어낸 특징들을 골고루 활용하기 힘들다는 단점이 있다. 따라서 본 논문에서는 매 디컨볼루션 층 이후에 인체 자세 추정을 하여 다양한 해상도에서 연산을 하고 이를 종합하여 최종 인체 자세 추정을 하는 방법을 제안한다. 실험 결과 Res50 과 기존의 디컨볼루션 출력망의 경우 0.717 AP 를 얻었는데 Res101 과 기존의 디컨볼루션 출력망을 사용한 결과 50% 이상의 파라미터 수 증가와 함께 0.727 AP, 즉 0.010AP 의 성능 향상이 이루어졌다. 이에 반해 Res50 에 다중 해상도 디컨볼루션 출력망을 사용한 결과 약 1%의 파라미터 수 증가 만으로 0.720 AP, 즉 0.003 AP 의 성능 향상이 이루어졌다. 이를 통해 디컨볼루션 출력망 구조를 개선하면 매우 적은 파라미터 수 증가 만으로도 인체 자세 추정의 성능을 효과적으로 향상시킬 수 있음을 확인하였다.

  • PDF

Robot Posture Estimation Using Inner-Pipe Image

  • Sup, Yoon-Ji;Sok, Kang-E
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.173.1-173
    • /
    • 2001
  • This paper proposes the methodology in image processing algorithm that estimates the pose of the pipe crawling robot. The pipe crawling robots are usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light varies with the robot posture. The algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

  • PDF

얼굴 모션 추정과 표정 복제에 의한 3차원 얼굴 애니메이션 (3D Facial Animation with Head Motion Estimation and Facial Expression Cloning)

  • 권오륜;전준철
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.311-320
    • /
    • 2007
  • 본 논문에서는 강건한 얼굴 포즈 추정과 실시간 표정제어가 가능한 비전 기반 3차원 얼굴 모델의 자동 표정 생성 방법 및 시스템을 제안한다. 기존의 비전 기반 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 반영하지 못하고 얼굴 표정 생성에 초점을 맞추고 있다. 그러나, 얼굴 포즈를 정확히 추정하여 반영하는 작업은 현실감 있는 얼굴 애니메이션을 위해서 중요한 이슈로 인식되고 있다. 본 연구 에서는 얼굴 포즈추정과 얼굴 표정제어가 동시에 가능한 통합 애니메이션 시스템을 제안 하였다. 제안된 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출은 비모수적 HT 컬러 모델과 템플릿 매칭을 통해 수행된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 얼굴 모션 추정을 위하여 3차원 실린더 모델을 검출된 얼굴 영역에 투영하고 광류(optical flow) 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 주요 얼굴 특징점을 검출하며 광류 알고리즘에 의하여 특징점을 추적한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수(parameters)를 계산한다. 결국 얼굴 표정 복제는 두 개의 정합과정을 통해 수행된다. 애니메이션 매개변수 3차원 얼굴 모델의 주요 특징점(제어점)의 이동은 획득된 애니메이션 매개변수를 적용하여 수행하며, 정점 주위의 부가적 정점의 위치는 RBF(Radial Basis Function) 보간법을 통해 변형한다. 실험결과 본 논문에서 제안된 비전기반 애니메이션 시스템은 비디오 영상으로부터 강건한 얼굴 포즈 추정과 얼굴의 표정변화를 잘 반영하여 현실감 있는 애니메이션을 생성함을 입증할 수 있었다.

얼굴의 움직임을 이용한 응시점 추적 (Head Orientation-based Gaze Tracking)

  • 고종국
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.401-403
    • /
    • 1999
  • 본 논문에서 우리는 제약이 없는 배경화면에서 얼굴의 움직임을 이용한 응시점 추적을 위해 얼굴의 특징점(눈, 코, 그리고 입)들을 찾고 head orientation을 구하는 효?거이고 빠른 방법을 제안한다. 얼굴을 찾는 방법이 많이 연구 되어 오고 있으나 많은 부분이 효과적이지 못하거나 제한적인 사항을 필요로 한다. 본 논문에서 제안한 방법은 이진화된 이미지에 기초하고 완전 그래프 매칭을 이용한 유사성을 구하는 방법이다. 즉, 임의의 임계치 값에 의해 이진화된 이미지를 레이블링 한 후 각 쌍의 블록에 대한 유사성을 구한다. 이때 두 눈과 가장 유사성을 갖는 두 블록을 눈으로 선택한다. 눈을 찾은 후 입과 코를 찾아간다. 360$\times$240 이미지의 평균 처리 속도는 0.2초 이내이고 다음 탐색영역을 예상하여 탐색 영역을 줄일 경우 평균 처리속도는 0.15초 이내였다. 그리고 본 논문에서는 얼굴의 움직임을 구하기 위해 각 특징점들이 이루는 각을 기준으로 한 템플릿 매칭을 이용했다. 실험은 다양한 조명환경과 여러 사용자를 대상으로 이루어졌고 속도와 정확성면에서 좋은 결과를 보였다. 도한, 명안정보만을 사용하므로 흑백가메라에서도 사용가능하여 경제적 효과도 기대할 수 있다.

  • PDF

얼굴 위치와 방향 추적을 이용한 3차원 시각화 (3D Visualization using Face Position and Direction Tracking)

  • 김민하;김지현;김철기;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.173-175
    • /
    • 2011
  • 본 논문에서는 얼굴의 3차원 위치와 방향을 추적하여 3D 물체를 다각도에서 볼 수 있는 사용자 인터페이스를 제시한다. 구현된 사용자 인터페이스는 사용자가 상하좌우로 얼굴을 움직였을 때, 얼굴의 3차원 위치 좌표를 이용하여 사용자가 움직이는 방향으로 물체를 이동시킨다. 그 뒤 사용자가 상하(pitch)좌우(yaw)로 얼굴을 회전시켰을 때, 얼굴의 Euler angle값을 이용하여 얼굴의 회전각만큼 물체를 회전시켜 물체의 측면을 제공한다. 다양한 위치와 방향에 사용자가 있을 때 물체의 움직임의 정확성과 반응성을 실험한 결과 시각화가 잘 됨을 확인하였다.

  • PDF

칼만 필터와 가중탐색영역 CAMShift를 이용한 휴먼 바디 트래킹 및 자세추정 (Human Body Tracking and Pose Estimation Using CamShift Based on Kalman Filter and Weighted Search Windows)

  • 민재홍;김인규;황승준;백중환
    • 한국항행학회논문지
    • /
    • 제16권3호
    • /
    • pp.545-552
    • /
    • 2012
  • 본 논문에서는 사람의 신체 일부분을 추적하는 시스템을 위해서 피부영역을 추출하고 여러 개의 영역을 추적하는 칼만 필터와 가중 탐색 영역을 이용한 다중 CAMShift 알고리즘(KWMCAMShift)을 제안한다. 배경모델을 구성하고 손과 얼굴의 피부색영역을 탐색 영역으로 하는 CAMShift를 제안한다. 이때 CAMShift의 유동적인 탐색영역을 안정화하기 위해 칼만 필터를 이용한다. 손과 얼굴 등이 상호 겹쳐지는 경우 탐색영역의 손실을 막기 위해 주 탐색영역과 비 탐색영역에 대한 가중치를 부가하여 서로 폐색 영역에 대한 회피 알고리즘을 제안한다. 얼굴 영역과 양손의 영역을 중심으로 인간의 자세를 추정하여 어깨와 손과의 관계로 팔꿈치를 추정하였고, 가우시안 배경 모델에 생성되는 그림자를 제거하여 발끝을 찾아 신체 전체를 추정하였다. 제안된 KWMCAMShift 알고리즘을 적용하였을 때 폐색 시에도 96.82%의 인식률을 보였으며 실시간이 가능하였다.