• 제목/요약/키워드: Head Gimbal Assembly

검색결과 11건 처리시간 0.026초

초소형 광자기 드라이브용 HGA의 신뢰성 및 충격 해석 (Probabllistic and Shock Analysis of Head-gimbal Assembly in Micro MO Drives)

  • 오우석;박노철;양현석;박영필;홍어진
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1347-1353
    • /
    • 2004
  • With respect to the researches of the optical flying head(OFH) , the head-gimbal assembly should be analyzed to guarantee the stable fabrication and the characteristics of shock resistance. The suitable design is proved through the Probabilistic analysis of the design parameters and material properties of the model. Probabilistic analysis is a technique that be used to assess the effect of uncertain input parameters and assumptions on your analysis model. Using a probabilistic analysis you can find out how much the results of a finite elements analysis are affected by uncertainties in the model. Another factor is analysis of the dynamic shock analysis. For the mobile application, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes in contact with outer shock disturbance. the system gets critical damage in head-gimbal assembly or disk. This paper describes probabilistic and dynamic shock analysis of head-gimbal assembly in micro MO drives using OFH slider.

초소형 광자기 드라이브용 HGA의 동적 충격 시뮬레이션 (Dynamic Shock Simulation of Head-gimbal Assembly in Micro MO Drives)

  • 오우석;홍어진;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.189-194
    • /
    • 2004
  • As a disk drive becomes widely used in portable environments, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes In contact with outer shock disturbance, the system gets critical damage in head-gimbal assembly or disk. This paper describes analysis of a HGA(head-gimbal assembly) in micro MO drives to shock loading during both non-operating state and operating state. A finite element model which consists of the disk, suspension, slider and air bearing was used to find structural response of micro MO drives. In the operational case. the air bearing is approximated with four linear elastic springs. The commercially available finite element solver, ANSYS/LS-DYNA, is used to simulate the shock response of the HGA in micro MO drives. In this paper, the mechanical robustness of the suspension is simuiated considering the shock responses of the HGA.

  • PDF

100kTPI급 하드 디스크 드라이브 TMR 설계를 위한 SUSPENSION에 관한 연구 (A TMR Budget Design for 100kTPI Hard Disk Drives Using a Head Gimbal Assembly with Radial Motion Capability)

  • 오동호;강성우;한윤식;김영훈;고정석;황태연
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.140-145
    • /
    • 2002
  • In high-capacity disk drives with ever-growing track density, the allowable level of position error signal (PES) is becoming smaller and smaller. A substantial portion of the PES is caused by disk vibration. This can be reduced by using a head gimbal assemblies (HGAs) that do not confine the slider movement to the vertical direction to disks, but allow movement to the radial direction of disks with respect to disk vibration. Several types of HGAs are proposed for such radial motion of the slider. Experimental results show that the PES levels are reduced by the proposed HGA-design concepts.

  • PDF

100 kTPI급 HDD TMR 설계를 위한 Suspension에 관한 연구 (A TMR Budget Design for 100kTPI Hard Disk Drives Using a Head Gimbal Assembly with Radial Motion Capability)

  • D. H. Oh;S. W. Kang;Y. S. Han;Kim, Y. H.;T. Y. Hwang
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.320.2-320
    • /
    • 2002
  • In high-capacity disk drives with ever-growing track density, the allowable level of position error signal (PES) is becoming smaller and smaller. A substantial portion of the PES is caused by disk vibration. This can be reduced by using a head gimbal assemblies (HGAs) that do not confine the slider movement to the vertical direction to disks, but allow movement to the radial direction of disks with respect to disk vibration. Several types of HGAs are proposed for such radial motion of the slider. (omitted)

  • PDF

마이크로 광디스크 드라이브 서스펜션의 최적 설계 (Optimal Design of Suspension for Micro Optical Disk Drive)

  • 전준호;전정일;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.570-575
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly (HSA). It is important factor to allow broader bandwidths for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies in tracking direction. Initial model was designed and the design parameter was defined to the model. The mode frequency variation for the change of design parameter was observed by modal analysis using the finite element method(FEM). The sensitivity matrix was calculated from the observed data and so through sensitivity analysis, an optimized ODD suspension was designed to have the higher resonant frequency than the initial model.

  • PDF

마이크로 광디스크 드라이브 서스펜션의 최적 설계 (Optimal Design of Suspension for Micro Optical Disk Drive)

  • Jeon, Joon-Ho;Chun, Jeong-Il;Park, No-Chul;Park, Young-Pil
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.359.1-359
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly(HGA). It is important (actor to allow broader bandwidth for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies. It was decided that the first resonant frequency in tracking direction was higher than 5㎑. (omitted)

  • PDF

HDD 액추에이터의 스웨이징성능향상을 위한 베이스플레이트 최적설계 (Baseplate Design to Improve Swaging Performance of Actuator in a HDD)

  • 이행수;홍어진
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.760-766
    • /
    • 2009
  • In the manufacturing process of HDD, ball swaging method is commonly used to joint the Head Gimbal Assembly(HGA) with the arm of the actuator. The hub on the HGA is placed into the hole of the actuator arm, and the hub and arm is bonded by the pressure of steel ball. The pressure for plastic deformation on the baseplate causes the undesirable deformation on HGA, such as tilting, flying height change of head. After obtaining the key parameters that have large sensitivity on the swaging process, the optimal shape of baseplate is proposed to increase the static performance during swaging process. Contribution of the proposed design for the swaging performance is verified by contact simulation with elasto-plastic deformation.

고밀도 HDD 용 MEMS 마이크로 액추에이터의 동적 해석 (Dynamic Characterizations of a MEMS Microactuator for High Density Hard Disk Drive)

  • 김철순;전종업;정성환;최재준;민동기;김영훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.917-923
    • /
    • 2001
  • This paper presents the fabrication and testing results of a dual stage microactuator system for fine positioning of magnetic heads in hard disk drives. An electrostatic rotary microactuator was newly designed and fabricated. The microactuator was integrated into the head gimbal assembly of a disk drive system and its dynamic characteristics were investigated. Experimental results show that natural frequency and voltage gain of the microactuator are 4.3 KHz and 25 nm/V and the dual stage microactuator system achieves the tracking accuracy of 30 nm.

  • PDF

고트랙밀도 HDD 서스펜션의 동특성 해석 (suspension dynamics of HDD for high track density)

  • 김정주;전정일;변용규;노광춘;정정주;전태건
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1885-1895
    • /
    • 1997
  • As track density needs to increase to the order of 10, 000 tpi, the suspension has become a critical component in hard disk drives. One of the main obstacles to attain high track density is the structural resonances of the suspension in lateral direction. We investigate the suspension dynamics through the experimental modal analysis and the finite element method. An LDV (Laser Doppler Vibrometer) is employed to measure the response of the suspension which is excited by a shaker and an inpulse hammer for the free condition and the loaded condition, respectively. After comparing the experimental and numerical results, we study how the initial geometry of the bend region affects the suspension dynamics. It is found that the natural frequency of the sway mode decreases as the bend ratio and the bend angle increase. The shape of torsional mode changes as the mass of a slider increases, resulting in a local decrease in the natural frequency.