• 제목/요약/키워드: Hazardous component

검색결과 50건 처리시간 0.026초

친환경 무연솔더를 적용한 수동부품의 솔더 접합부 전단강도 비교 (Shear Strength Comparison of Passive Component Using the Environmental-Friendly Lead-Free Solder)

  • 송병석;조재립
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2006년도 춘계학술대회
    • /
    • pp.375-380
    • /
    • 2006
  • Recently European Council(EU) published the RoHS(restriction of the use of certain hazardous substances in electrical and electronic equipment) which is prohibit the use of Pb, Hg, Cd, $Cr^{+6}$, PBB or PBDE in the electrical and electronic equipments. So EU member States shall ensure that, from 1 July 2006, new electrical and electronic equipment put on the market does not contain 6 hazardous substances. So many kinds of projects is proceeding to ensure the reliability of Pb-free electronics in the worlds. Especially it is necessary to evaluate of Pb-free solder joints in electronics. Therefore, on this paper, we compared with solder joint strength of chip components, respectively SnPb, Pb-free solder as follows reliability test methods. We also measured the shear strength of solder joint and also compared the effects of environmental test methods. In this results, we analyzed and compared the shear strength variation as follows solder materials and reliability test conditions.

  • PDF

Sensing and Identification of Health Hazardous Molecular Components using Surface-Enhanced Raman Spectroscopy: A Mini Review

  • Pratiksha P. Mandrekar;Moonjin Lee;Tae-Sung Kim;Daejong Yang
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.259-266
    • /
    • 2023
  • The use of various adulterants and harmful chemicals is rapidly increasing in various sectors such as agriculture, food, and pharmaceuticals, and they are also present in our surroundings in the form of pollutants. The regular and repeated intake of harmful chemicals often adversely affects human health. The prolonged exposure of living beings to such adverse components can lead to severe health complications. To avoid the unlimited utilization of these chemical components, a sensing technology that is sensitive and reliable for low-concentration detection is beneficial. Surface-enhanced Raman spectroscopy (SERS) is a powerful method for identifying low-range concentrations of analytes, leading to great applications in molecular identification, including various diagnostic biomarkers. SERS in chemical, gas, and biological sensors can be an excellent approach in the sensing world to achieve rapid and multiple-analyte detection, leading to a new and efficient approach in healthcare monitoring.

수전해 수소충전소 부품별 유해위험요인 분석 (A Study on the Analysis of Hazardous Risk Factors for Component in Hydrogen Station with Water Electrolysis Device)

  • 서두현;이광원;김태훈
    • 한국가스학회지
    • /
    • 제23권6호
    • /
    • pp.33-38
    • /
    • 2019
  • 제조식 수소충전소에서 생산되는 수소가스는 일반적으로 석탄연료의 개질 및 부생가스 등을 활용하지만 순수물을 활용한 수전해 기술의 경우 청정한 기술로 각광 받고 있다. 전기에너지를 이용하여 순수한 물로부터 수소를 생산하는 기술 중에는 향후 가격 및 성능 경쟁에서 우수한 PEM(Polymer Electrolyte Membrane electrolysis)을 이용한 개발이 주로 이루어지고 있다. 이에 본 연구에서는 국내 수소충전소 중 개발단계에 있는 PEM 수전해 수소충전소에 대해 잠재된 유해위험요소를 확인하여 안전한 수소생산 및 수소충전소의 활성화를 도모하고자 한다. 유해위험요소를 도출하기 위해서는 수전해 수소충전소의 설비 및 장치의 안전성이 우선 확보되어야하기에 FMEA(Failure Mode & Effect Analysis)를 수행함으로써 수전해 및 수소충전소의 설비에서의 유해위험요인을 분석하였다.

인쇄회로기판 제조 공정에서 위험성평가와 안전조치 적용 사례 연구 (A Case Study of Risk Assessments and Safety Measures in a PCB Manufacturing Process)

  • 이영만;이인석
    • 한국안전학회지
    • /
    • 제37권4호
    • /
    • pp.120-128
    • /
    • 2022
  • Printed circuit boards (PCBs) are a basic component in the electronics industry and are widely used in nearly all electronic products, such as mobile phones, tablet computers, and digital cameras, as well as in electric equipment. PCB manufacturing involves the use of many chemicals and chemical processes and therefore has more risks than other manufacturing sectors. This study aims to identify the causes of possible accidents during PCB manufacturing through risk assessment, develop and implement safety measures, and evaluate the effectiveness of these measures. Note that the safety measures developed to mitigate the risks of a certain process were also implemented for other similar processes. The risk assessments conducted over seven years, from 2015 to 2021, at a PCB manufacturing company identified 361 hazardous processes. Between 2016 and 2019, 41-56 hazardous processes were identified per year; such processes decreased to fewer than 20 per year after 2020. Application of the risk assessment results to the improvement of the hazardous processes with the similar characteristics seems to be effective in decreasing the risks. Equipment-related factors such as lack of appropriate maintenance, low work standards, and defective protection devices were responsible for 59.8% of all possible accidents. Because PCB manufacturing involves many chemicals, skin contact with hazardous substances, electric shock, fire, and explosion were the most common types of possible accidents (81.7%). In total, 505 safety measures were implemented, including 157 related to purchase and improvement of equipment and devices for safety (31.1%), 147 related to the installation/modification of fire prevention facilities (29.1%), and 69 related to the use of standard electrical appliances (13.7%). Risk assessment conducted after implementing the safety measures showed that these measures significantly decreased risk; 247 processes (68.4%) had a risk level of 3, corresponding to "very low," and 114 processes (31.6%) showed a risk level of 4, corresponding to "low." In particular, risk assessment of 104 processes with risk scores of 12 and 10 other processes with risk score of 16 showed that the risk decreased to 4 after implementing the safety measures. Thus, implementing these measures in similar manufacturing sectors that involve chemical processes can mitigate risk.

A Formal Safety Analysis for PLC Software-Based Safety Critical System using Z

  • Koh, Jung-Soo;Seong, Poong-Hyun;Son, Han-Seong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.153-158
    • /
    • 1997
  • This paper describes a formal safety analysis technique which is demonstrated by performing empirical formal safety analysis with the case study of beamline hutch door Interlock system that is developed by using PLC(Programmable Logic Controller) systems at the Pohang Accelerator Laboratory. In order to perform formal safety analysis, we have built the Z formal specifications representation from user requirement written in ambiguous natural language and target PLC ladder logic, respectively. We have also studied the effective method to express typical PLC timer component by using specific Z formal notation which is supported by temporal history. We present a formal proof technique specifying and verifying that the hazardous states are not introduced into ladder logic in the PLC-based safety critical system.

  • PDF

순환유동층에서 폐수슬러지와 석탄의 혼소 특성 (Incineration of Waste Water Sludge and Coal In a Circulating Fluidized Bed Combustor)

  • 배달희;선도원;박재현;류호정;박도현
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.165-172
    • /
    • 2004
  • Co-incineration of coal and wastewater sludge was r;erfonn:rl in a O.lMWth bench scale circulating fluidized bed combustor(CFBC) Sludge was received from a wastewater treatment plant in a dye industrial complex in Busan. Metropolis. Moisture content of received sludge was 80%. Coal and sludge mixture was prepared with weight ratio of 90/10, 85/15 and 80/20. Co-combustion characteristics of the coal and sludge mixture demonstrated stable combustion conditions. Component analysis, incineration characteristics, boiler performance was measured before and after the test and application for commercial 59MWth CFBC boiler. The release of hazardous components such as $SO_2$ and Cl was suppressed by the presence of inherent minerals of Ca, Na, K in coal and sludge mixture. Pre-drying was not essential but it was recommended for the benefits of manageability of sludge.

  • PDF

혼합물에서 화학물질간의 상호작용 효과 (Interaction effect of Chemical Mixtures)

  • 임종환;신주연;김용규
    • 대한임상독성학회지
    • /
    • 제3권1호
    • /
    • pp.11-16
    • /
    • 2005
  • Chemical mixtures of components, each of which are present at less than guidance concentrations, may be hazardous due to additivity, interactions, or both. Toxicological interactions may increase the health hazard above what would be expected from an assessment of each component singly, or all components additively. So chemical mixture are a particular issue in public health. There are several approach to assess whether there are additivity or interaction in assessing toxicological effects, such as, components-based approach, physiologically-based pharmacokinetic /pharmacodynamic(PBPK/PD) models, hazard index method, and weight-of evidence method. If we consider interaction or additivity effects in assessing the health effects of chemcial mixtures, we can get more accurate information about toxicological effects and dose-response relationship in chemical mixtures.

  • PDF

PSA의 인간신뢰도분석 모델의 적용 (An Application of the HRA Methodology in PSA: A Gas Valve Station)

  • 제무성
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.150-156
    • /
    • 2000
  • In this paper, the human error contributions to the system unavailability are calculated and compared to the mechanical failure contributions. The system unavailability is a probability that a system is in the failed state at time t, given that it was the normal state at time zero. It is a function of human errors committed during maintenance and tests, component failure rates, surveillance test intervals, and allowed outage time. The THERP (Technique for Human Error Rate Prediction), generally called "HRA handbook", is used here for evaluating human error rates. This method treats the operator as one of the system components, and human reliability is assessed in the same manner as that of components. Based on the calculation results, the human error contribution to the system unavailability is shown to be more important than the mechanical failure contribution in the example system. It is also demonstrated that this method is very flexible in that it can be applied to any hazardous facilities, such as gas valve stations and chemical process plants.ss plants.

  • PDF

스테인레스 강 용접중 발생하는 망간의 발생량 및 함량변화에 관한 연구 (Generation Rate and Content Variation of Manganese in Stainless Steel Welding)

  • 윤충식;김정한
    • 한국산업보건학회지
    • /
    • 제16권3호
    • /
    • pp.254-263
    • /
    • 2006
  • Manganese has a role as both toxic and essential in humans. Manganese is also an essential component in the welding because it increases the hardness and strength, prevents steel from cracking of welding part and acts as a deoxidizing agent to form a stable weld. In this study, manganese generation rate and its content was determined in flux cored arc welding on stainless steel. Domestic two products and foreign four products of flux cored wires were tested in the well designed fume generation chamber as a function of input power. Welding fume was measured by gravimetric method and metal manganese was determined by inductively coupled plasma-atomic emission spectrophotometer. The outer shell of the flux cored wire tube and inner flux were analyzed by scanning electron microscopy to determine their metal compositions. Manganese generation rate($FGR_{mn}$) was increased as the input power increased. It was 16.3 mg/min at the low input power, 38.1 mg/min at the optimal input power, and up to 55.4 mg/min at the high input power. This means that $FGR_{mn}$ is increased at the work place if welder raise the current and/or voltage for the high productivity. The slope coefficient of $FGR_{mn}$ was smaller than that of the generation rate of total fume(FGR). Also, the correlation coefficient of $FGR_{mn}$ was 0.65 whereas that of FGR is 0.91. $FGR_{mn}$ was equal or higher in the domestic products than that of the foreign products although FGR was similar. From the electron microscopic analytical data, we concluded that outer shell of the wire was composed mainly of iron, chromium, nickel and less than 1.2 % of manganese. There are many metal ingredients such as iron, silica, manganese, zirconium, titanium, nickel, potassium, and aluminum in the inner flux but they were not homogeneous. It was found that both $FGR_{mn}$ and content of manganese was higher and more varied in domestic flux cored wires than those of foreign products. To reduce worker exposure to fumes and hazardous component at the source, further research is needed to develop new welding filler materials that improve the quality of flux cored wire in respect to these points. Welder should keep in mind that the FGR, $FGR_{mn}$ and probably the generation rate of other hazardous metals were increased as the input power increase for the high productivity.

용접흄 충 금속함량 변화에 관한 연구 (A Study on the Content Variation of Metals in Welding Fumes)

  • 윤충식;박동욱;박두용
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.