The SWAT(Soil and Water Assesment Tool) is a relatively large scale model for the complicated watershed or river basin. The model was developed to predict the effect of land management practices on water, sediment and agricultural chemical yields in large complex watershed with varying soils, land use and management conditions over long periods of time. Usually streams are divided into urban stream and natural stream in accordance with the development level. In case of urban stream, according to urbanization, as impermeable areas are increasing due to the change of land use condition and land cover condition, dry stream phenomenon at urban stream is rapidly progressed. In this study, long term run-off simulations in urban stream are performed by using SWAT model. Especially, the model is applied in small scale water shed, Joman River basin. The optimization by the sensitivity analysis is also performed for the model parameter estimations.
Journal of the Korea institute for structural maintenance and inspection
/
v.17
no.4
/
pp.112-118
/
2013
The selection of appropriate ground motions and reasonable modification are becoming increasingly critical in reliable prediction on seismic performance of structures. A widely used amplitude scaling approach is not sufficient for robust structural evaluation considering a site specific seismic hazard because only one spectral value is matched to the design spectrum typically at the structural fundamental period. Hence alternative approaches for ground motion selection and modifications have been suggested. However, there is no means to evaluate such methodologies yet. In this study, it is focused to describe the main questions resided in the amplitude scaling approach and to propose a regression model for structural damage as point of comparison. Spectrum compatible approach whose resulting spectrum matches the design spectrum at the entire range of the structural period is considered as alternative to be compared to the amplitude scaling approach. The design spectrum is generated according to ASCE7-05.
Lee, Jong Young;Kwon, Bae Ju;Cho, Young Dae;Kang, Hyun-Seung;Han, Moon Hee
Journal of Korean Neurosurgical Society
/
v.53
no.6
/
pp.342-348
/
2013
Objective : Several scales are currently used to assess occlusion rates of coiled cerebral aneurysms. This study compared these scales as predictors of recanalization. Methods : Clinical data of 827 patients harboring 901 aneurysms treated by coiling were retrospectively reviewed. Occlusion rates were assessed using angiographic grading scale (AGS), two-dimensional percent occlusion (2DPO), and volumetric packing density (vPD). Every scale had 3 categories. Followed patients were dichotomized into either presence or absence of recanalization. Kaplan-Meier analysis was conducted, and Cox proportional hazards analysis was performed to identify surviving probabilities of recanalization. Lastly, the predictive accuracies of three different scales were measured via Harrell's C index. Results : The cumulative risk of recanalization was 7% at 12-month, 10% at 24-month, and 13% at 36-month of postembolization, and significantly higher for the second and third categories of every scale (p<0.001). Multivariate-adjusted hazard ratios (HRs) of the second and third categories as compared with the first category of AGS (HR : 3.95 and 4.15, p=0.004 and 0.001) and 2DPO (HR : 4.87 and 3.12, p<0.001 and 0.01) were similar. For vPD, there was no association between occlusion rates and recanalization. The validated and optimism-adjusted C-indices were 0.50 [confidence (CI) : -1.09-2.09], 0.47 (CI : -1.10-2.09) and 0.44 (CI : -1.10-2.08) for AGS, 2DPO, and vPD, respectively. Conclusion : Total occlusion should be reasonably tried in coiling to maximize the benefit of the treatment. AGS may be the best to predict recanalization, whereas vPD should not be used alone.
Kim, Hyun Il;Keum, Ho Jun;Lee, Jae Yeong;Kim, Beom Jin;Han, Kun Yeun
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.6-6
/
2018
최근 집중 호우로 인한 내수침수 피해가 도시화와 기후변화로 늘어나고 있다. 내수침수 피해로 인한 복구비용과 시간이 증가하고 있으며 향후에는 이보다 더 크게 늘어날 것으로 예상된다. 이러한 문제를 해결하기 위하여 충분한 선행시간을 가지고 내수 침수 구역을 제시할 수 있어야 한다. 기존의 물리적 모델은 정확하고 정교한 결과를 제공하지만, 시뮬레이션을 준비하고 마치는 데에 시간이 많이 소요된다. 그 이유로서는 강우량, 지형적 특성, 배수관망 시스템, 수문학적 매개변수 등의 다양한 데이터도 필요하기 때문이다. 이는 도시유역에 대한 내수침수의 실시간 예측이 어렵게 되었으며, 충분한 선행시간을 확보하지 못하는 원인이 되었다. 본 연구에서는 이 문제에 대한 해결책으로 결정론적 방법과 확률론적 방법을 자료지향형 모형으로 결합하여 해결책을 제시하고자 하며, 특정 강우 조건하에 도시유역에서의 내수침수에 영향을 미치는 맨홀에 대한 정보를 제공하고자 한다. 위와 같은 과정을 수행하기 위하여 입력자료 조합에 대한 비선형 분석을 실시하였으며, 그 결과로 특정 강우 조건에 대하여 각 맨홀에 대한 누적월류량을 예측할 수 있는 비선형 인공신경망을 구축할 수 있었다. 본 연구에서 제시된 방법론은 국내의 강남 배수분구에 대하여 적용이 되었으며, 내수침수 예측결과와 2차원 해석결과를 비교하고자 하였다. 본 연구에서는 위 과정을 통하여 1차원 도시유출해석을 위한 입력 자료를 준비하는 시간을 절약하고, 다양한 강우 조건과 내수침수지도 사이의 연관성을 학습하는 예측 모형을 이용하여 도시유역의 내수침수에 대한 충분한 선행시간을 확보하고자 한다. 결론적으로, 이 연구의 결과는 도시유역에 대한 비구조적 대책 수립에 도움을 줄 것으로 확인이 되며 도시 유역 내에 맨홀 위치들을 고려한 위험지구를 파악하는 데에 유용할 것으로 판단된다.
El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
Nuclear Engineering and Technology
/
v.53
no.10
/
pp.3275-3285
/
2021
A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.
The recent performance of residential mortgages demonstrated how default risk operated separately from prepayment risk. In this study, we investigated the determinants of the borrowers' decisions pertaining to early termination through default from the mortgage performance data released by Freddie Mac, involving securitized mortgage loans from January 2011 to September 2013. We estimated a Cox-type, proportional hazard model with a single risk on fundamental factors associated with default options for individual mortgages. We proposed a mortgage default model that included two specifications of delinquency: one using a delinquency binary variable, while the other using a delinquency probability. We also compared the results obtained from two specifications with respect to goodness-of-fit proposed in the spirit of Vuong (1989) in both overlapping and nested models' cases. We found that a model with our proposed delinquency probability variable showed a statistically significant advantage compared to a benchmark model with delinquency dummy variables. We performed a default prediction power test based on the method proposed in Shumway (2001), and found a much stronger performance from the proposed model.
Kah, Dong-Ha;Jung, Hyunsook;Seo, Jiyun;Lee, Juno;Lee, Hae Wan
Journal of the Korea Institute of Military Science and Technology
/
v.22
no.1
/
pp.135-140
/
2019
Upon chemical agent release, it is of importance to study the characteristic persistence and evaporation of chemical agents from surfaces for the prediction of dispersion hazard. We have recently developed a fast and near real-time wind tunnel system proving the controlled environment(air flow, temperature, and humidity), continuously collects agent vapor and analyzes it. A thermal sorber/desorber is unnecessary to collect the vapor in the system we have developed. Instead, a tandem thermal sorber collects the vapor, which is then directly transferred to a fast gas chromatography(GC) for analysis. As a proof of concept, the evaporation of sulfur mustard agent(HD) was studied from glass, sand and concrete. The results were in an excellent agreement with those obtained from the conventional wind tunnel system.
Koo, Bo Kyung;Oh, Sohee;Kim, Yoon Ji;Moon, Min Kyong
Journal of Lipid and Atherosclerosis
/
v.7
no.2
/
pp.110-121
/
2018
Objective: We developed a new equation for predicting coronary heart disease (CHD) risk in Korean diabetic patients using a hospital-based cohort and compared it with a UK Prospective Diabetes Study (UKPDS) risk engine. Methods: By considering patients with type 2 diabetes aged ${\geq}30years$ visiting the diabetic center in Boramae hospital in 2006, we developed a multivariable equation for predicting CHD events using the Cox proportional hazard model. Those with CHD were excluded. The predictability of CHD events over 6 years was evaluated using area under the receiver operating characteristic (AUROC) curves, which were compared using the DeLong test. Results: A total of 732 participants (304 males and 428 females; mean age, $60{\pm}10years$; mean duration of diabetes, $10{\pm}7years$) were followed up for 76 months (range, 1-99 month). During the study period, 48 patients (6.6%) experienced CHD events. The AUROC of the proposed equation for predicting 6-year CHD events was 0.721 (95% confidence interval [CI], 0.641-0.800), which is significantly larger than that of the UKPDS risk engine (0.578; 95% CI, 0.482-0.675; p from DeLong test=0.001). Among the subjects with <5% of risk based on the proposed equation, 30.6% (121 out of 396) were classified as ${\geq}10%$ of risk based on the UKPDS risk engine, and their event rate was only 3.3% over 6 years. Conclusion: The UKPDS risk engine overestimated CHD risk in type 2 diabetic patients in this cohort, and the proposed equation has superior predictability for CHD risk compared to the UKPDS risk engine.
Purpose: Previous studies have demonstrated the usefulness of the controlling nutritional status (CONUT) score in nutritional assessment and survival prediction of patients with various malignancies. However, its value in advanced gastric cancer (GC) treated with neoadjuvant chemotherapy and curative gastrectomy remains unclear. Materials and Methods: The CONUT score at different time points (pretreatment, preoperative, and postoperative) of 272 patients with advanced GC were retrospectively calculated from August 2004 to October 2015. The χ2 test or Mann-Whitney U test was used to estimate the relationships between the CONUT score and clinical characteristics as well as short-term outcomes, while the Cox proportional hazard model was used to estimate long-term outcomes. Survival curves were estimated by using the Kaplan-Meier method and log-rank test. Results: The proportion of moderate or severe malnutrition among all patients was not significantly changed from pretreatment (13.5%) to pre-operation (11.7%) but increased dramatically postoperatively (47.5%). The pretreatment CONUT-high score (≥4) was significantly associated with older age (P=0.010), deeper tumor invasion (P=0.025), and lower pathological complete response rate (CONUT-high vs. CONUT-low: 1.2% vs. 6.6%, P=0.107). Pretreatment CONUT-high score patients had worse progression-free survival (P=0.032) and overall survival (OS) (P=0.026). Adjusted for pathologic node status, the pretreatment CONUT-high score was strongly associated with worse OS in pathologic node-positive patients (P=0.039). Conclusions: The pretreatment CONUT score might be a straightforward index for immune-nutritional status assessment, while being a reliable prognostic indicator in patients with advanced GC receiving neoadjuvant chemotherapy and curative gastrectomy. Moreover, lower pretreatment CONUT scores might indicate better chemotherapy responses.
Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Laith R. Flaih;Abed Alanazi;Abdullah Alqahtani;Shtwai Alsubai;Nabil Ben Kahla;Adil Hussein Mohammed
Geomechanics and Engineering
/
v.37
no.1
/
pp.65-72
/
2024
Water ingress poses a common and intricate geological hazard with profound implications for tunnel construction's speed and safety. The project's success hinges significantly on the precision of estimating water inflow during excavation, a critical factor in early-stage decision-making during conception and design. This article introduces an optimized model employing the gene expression programming (GEP) approach to forecast tunnel water inflow. The GEP model was refined by developing an equation that best aligns with predictive outcomes. The equation's outputs were compared with measured data and assessed against practical scenarios to validate its potential applicability in calculating tunnel water input. The optimized GEP model excelled in forecasting tunnel water inflow, outperforming alternative machine learning algorithms like SVR, GPR, DT, and KNN. This positions the GEP model as a leading choice for accurate and superior predictions. A state-of-the-art machine learning-based graphical user interface (GUI) was innovatively crafted for predicting and visualizing tunnel water inflow. This cutting-edge tool leverages ML algorithms, marking a substantial advancement in tunneling prediction technologies, providing accuracy and accessibility in water inflow projections.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.