• Title/Summary/Keyword: Hazard prediction

Search Result 295, Processing Time 0.03 seconds

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Expression Profiles of Loneliness-associated Genes for Survival Prediction in Cancer Patients

  • You, Liang-Fu;Yeh, Jia-Rong;Su, Mu-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.185-190
    • /
    • 2014
  • Influence of loneliness on human survival has been established epidemiologically, but genomic research remains undeveloped. We identified 34 loneliness-associated genes which were statistically significant for high-lonely and low-lonely individuals. With the univariate Cox proportional hazards regression model, we obtained corresponding regression coefficients for loneliness-associated genes fo individual cancer patients. Furthermore, risk scores could be generated with the combination of gene expression level multiplied by corresponding regression coefficients of loneliness-associated genes. We verified that high-risk score cancer patients had shorter mean survival time than their low-risk score counterparts. Then we validated the loneliness-associated gene signature in three independent brain cancer cohorts with Kaplan-Meier survival curves (n=77, 85 and 191), significantly separable by log-rank test with hazard ratios (HR) >1 and p-values <0.0001 (HR=2.94, 3.82, and 1.78). Moreover, we validated the loneliness-associated gene signature in bone cancer (HR=5.10, p-value=4.69e-3), lung cancer (HR=2.86, p-value=4.71e-5), ovarian cancer (HR=1.97, p-value=3.11e-5), and leukemia (HR=2.06, p-value=1.79e-4) cohorts. The last lymphoma cohort proved to have an HR=3.50, p-value=1.15e-7. Loneliness-associated genes had good survival prediction for cancer patients, especially bone cancer patients. Our study provided the first indication that expression of loneliness-associated genes are related to survival time of cancer patients.

Seismic Zonation of Site Period at Daejeon within Spatial GIS tool (공간 GIS 기법을 활용한 대전 지역 부지 주기의 지진 구역화)

  • Sun, Chang-Guk;Shin, Jin-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.563-574
    • /
    • 2008
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which are strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area, Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area of interesting, pre-existing geotechnical data collections were performed across the extended area including the study area and a walk-over site survey was additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area of interesting, seismic microzoning map of the characteristic site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on the case study on seismic zonations at Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

  • PDF

A Study for Influence of Sun Glare Effect on Traffic Safety at Tunnel Hood (직광에 의한 눈부심 현상이 터널 출구부 안전성에 미치는 영향 연구)

  • Kim, Youngrok;Kim, Sangyoup;Choi, Jaisung;Lee, Daesung
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.103-110
    • /
    • 2012
  • PURPOSES : In Korea, over 70 percent of the land consists of mountainous and rolling area. Thus, tunnels continue its upward trend as road network are extended. In these circumstances, the importance of tunnel has been increased nowadays and then its safety investigation and research should be performed. This study is focus on confirming and improving the safety of tunnel. On tunnel hood, sunglare effect can irritate driver's behavior instantly and this can result in incident. METHODS : The study of this phenomenon is rarely conducted in domestic and foreign papers, so there is no proper measure for this. This study analyzes the driving environment of the effect of sunglare effect on tunnel hood. RESULTS : Traffic accidents stem from complex set of factors. This study build the Traffic Accident Prediction Models to find out the effect of sunglare effect on tunnel's hood. The independent variables are traffic volume, geometric design of road, length of tunnel and road side environment. Using these variables, this model estimates accident frequency on tunnel hood by Poisson regression model and Negative binomial regression model. Although Poisson regression model have more proper goodness of fit than Negative binomial regression model, Poisson regression model has overdipersion problem. So the Negative binomial regression model is used in this analysis. CONCLUSIONS : Consequently, the model shows that sunglare effect can play a role in driving safety on tunnel hood. As a result, the information of sunglare effect should be noticed ahead of tunnel hood so this can prevent drivers from being in hazard situation.

A Comparative Assessment of the Efficacy of Frequency Ratio, Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy in Landslide Susceptibility Mapping

  • Park, Soyoung;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.67-81
    • /
    • 2020
  • The rapid climatic changes being caused by global warming are resulting in abnormal weather conditions worldwide, which in some regions have increased the frequency of landslides. This study was aimed to analyze and compare the landslide susceptibility using the Frequency Ratio (FR), Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy (IoE) at Woomyeon Mountain in South Korea. Through the construction of a landslide inventory map, 164 landslide locations in total were found, of which 50 (30%) were reserved to validate the model after 114 (70%) had been chosen at random for model training. The sixteen landslide conditioning factors related to topography, hydrology, pedology, and forestry factors were considered. The results were evaluated and compared using relative operating characteristic curve and the statistical indexes. From the analysis, it was shown that the FR and IoE models were better than the other models. The FR model, with a prediction rate of 0.805, performed slightly better than the IoE model with a prediction rate of 0.798. These models had the same sensitivity values of 0.940. The IoE model gave a specific value of 0.329 and an accuracy value of 0.710, which outperforms the FR model which gave 0.276 and 0.680, respectively, to predict the spatial landslide in the study area. The generated landslide susceptibility maps can be useful for disaster and land use planning.

Analysis of Landslide and Debris flow Hazard Area using Probabilistic Method in GIS-based (GIS 기반 확률론적 기법을 이용한 산사태 및 토석류 위험지역 분석)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • In areas around Deoksan Li and Deokjeon Li, Inje Eup, Inje Gun, located between $38^{\circ}2^{\prime}55^{{\prime}{\prime}}N$ and $38^{\circ}5^{\prime}50^{{\prime}{\prime}}N$ in latitude and $128^{\circ}11^{\prime}20^{{\prime}{\prime}}E$ and $128^{\circ}18^{\prime}20^{{\prime}{\prime}}E$ in longitude, large-sized avalanche disasters occurred due to Typhoon Ewiniar in 2006. As a result, 29 people were dead or missing, along with a total of 37.25 billion won of financial loss(Gangwon Province, 2006). To evaluate such landslide and debris flow risk areas and their vulnerability, this study applied a technique called 'Weight of Evidence' based on GIS. Especially based on the overlay analysis of aerial images before the occurrence of landslides and debris flows in 2005 and after 2006, this study extracted 475 damage-occurrence areas in a shape of point, and established a DB by using such factors as topography, hydrologic, soil and forest physiognomy through GIS. For the prediction diagram of debris flow and landslide risk areas, this study calculated W+ and W-, the weighted values of each factor of Weight Evidence, while overlaying the weighted values of factors. Besides, the diagram showed about 76% in prediction accuracy, and it was also found to have a relatively high correlationship with the areas where such natural disasters actually occurred.

Assessment of Historical Earthquake Magnitudes and Epicenters Using Ground Motion Simulations (지진동 모사를 통한 역사지진 규모와 진앙 평가)

  • Kim, Seongryong;Lee, Sang-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2021
  • Historical records of earthquakes are generally used as a basis to extrapolate the instrumental earthquake catalog in time and space during the probabilistic seismic hazard analysis (PSHA). However, the historical catalogs' input parameters determined through historical descriptions rather than any quantitative measurements are accompanied by considerable uncertainty in PSHA. Therefore, quantitative assessment to verify the historical earthquake parameters is essential for refining the reliability of PSHA. This study presents an approach and its application to constrain reliable ranges of the magnitude and corresponding epicenter of historical earthquakes. First, ranges rather than specific values of ground motion intensities are estimated at multiple locations with distances between each other for selected historical earthquakes by reviewing observed co-seismic natural phenomena, structural damage levels, or felt areas described in their historical records. Based on specific objective criteria, this study selects only one earthquake (July 24, 1643), which is potentially one of the largest historical earthquakes. Then, ground motion simulations are performed for sufficiently broadly distributed epicenters, with a regular grid to prevent one from relying on strong assumptions. Calculated peak ground accelerations and velocities in areas with the historical descriptions on corresponding earthquakes are converted to intensities with an empirical ground motion-intensity conversion equation to compare them with historical descriptions. For the ground motion simulation, ground motion prediction equations and a frequency-wavenumber method are used to consider the effects of possible source mechanisms and stress drop. From these quantitative calculations, reliable ranges of epicenters and magnitudes and the trade-off between them are inferred for the earthquake that can conservatively match the upper and lower boundaries of intensity values from historical descriptions.

Prediction of Life-expectancy for Patients with Hepatocellular Carcinoma Based on Prognostic Factors (간암 환자에서 예후인자를 통한 생존기간의 예측)

  • Yeom, Chang-Hwan;Shim, Jae-Yong;Lee, Hye-Ree;Hong, Young-Sun
    • Journal of Hospice and Palliative Care
    • /
    • v.1 no.1
    • /
    • pp.30-38
    • /
    • 1998
  • Background : Hepatocellular carcinomoma is the 3rd most common malignancy and the 2nd most common cause of death in Korea. The prediction of life-expectancy in terminal cancer patients is a major problem for patients, families, and physicians. We would like to investigate the prognostic factors of hepatocellular carcinoma, and therefore contribute to the prediction of the survival time of patients with hepatocellular carcinoma. Methods : A total of 91 patients(male 73, female 18) with hepatocellular carcinoma who were admitted to the hospital between January and lune 1995 were entered into the study, and data were collected prospectively on 28 clinical parameters through medical obligation record. We surveyed an obligation and local district office records, and confirmed the surivival of patients till July, 1996. Using Cox-proportional hazard model, give the significant variables related to survival. These determined prognostic factors. Life regressional analysis was used, there were calculated predicted survival day based on combinations of the significant prognostic factors. Results : 1) Out of 91 patients, 73 were male, and 18 were female. The mean age was $56.7{\pm}10.6$ ears. During the study, except for 16 patients who could not follow up, out of 75 patients, the number of deaths was 57(76%) and the number of survivals was 18(24%). 2) Out of the 28 clinical parameters, the prognostic factors related to reduced survival rate were prothrombin time<40%(relative risk:10.8), weight loss(RR:4.4), past history of hypertension (RR:3.2), ascites(RR:2.8), hypocalcemia(RR:2.5)(P<0.001). 3) Out of five factors, the survival day is 1.7 in all of five, $4.2{\sim}10.0$ in four, $10.4{\sim}41.9$ in three, $29.5{\sim}118.1$ in two, $124.0{\sim}296.6$ in one, 724.0 in none. Conclusion : In hepatocellular carcinoma we found that the prognostic factors related to reduce survival rate were prolonged prothrombin time(<40%), weight loss, past history of hypertension, ascites, and hypocalcemia(<8.7mg/dl). The five prognostic factors enabled the prediction of life-expectancy in patients with hepatocellular carcinoma and may assist in managing patients with hepatocellular carcinomal.

  • PDF

Prediction of Life Expectancy for Terminally Ill Cancer Patients Based on Clinical Parameters (말기 암 환자에서 임상변수를 이용한 생존 기간 예측)

  • Yeom, Chang-Hwan;Choi, Youn-Seon;Hong, Young-Seon;Park, Yong-Gyu;Lee, Hye-Ree
    • Journal of Hospice and Palliative Care
    • /
    • v.5 no.2
    • /
    • pp.111-124
    • /
    • 2002
  • Purpose : Although the average life expectancy has increased due to advances in medicine, mortality due to cancer is on an increasing trend. Consequently, the number of terminally ill cancer patients is also on the rise. Predicting the survival period is an important issue in the treatment of terminally ill cancer patients since the choice of treatment would vary significantly by the patents, their families, and physicians according to the expected survival. Therefore, we investigated the prognostic factors for increased mortality risk in terminally ill cancer patients to help treat these patients by predicting the survival period. Methods : We investigated 31 clinical parameters in 157 terminally ill cancer patients admitted to in the Department of Family Medicine, National Health Insurance Corporation Ilsan Hospital between July 1, 2000 and August 31, 2001. We confirmed the patients' survival as of October 31, 2001 based on medical records and personal data. The survival rates and median survival times were estimated by the Kaplan-Meier method and Log-rank test was used to compare the differences between the survival rates according to each clinical parameter. Cox's proportional hazard model was used to determine the most predictive subset from the prognostic factors among many clinical parameters which affect the risk of death. We predicted the mean, median, the first quartile value and third quartile value of the expected lifetimes by Weibull proportional hazard regression model. Results : Out of 157 patients, 79 were male (50.3%). The mean age was $65.1{\pm}13.0$ years in males and was $64.3{\pm}13.7$ years in females. The most prevalent cancer was gastric cancer (36 patients, 22.9%), followed by lung cancer (27, 17.2%), and cervical cancer (20, 12.7%). The survival time decreased with to the following factors; mental change, anorexia, hypotension, poor performance status, leukocytosis, neutrophilia, elevated serum creatinine level, hypoalbuminemia, hyperbilirubinemia, elevated SGPT, prolonged prothrombin time (PT), prolonged activated partial thromboplastin time (aPTT), hyponatremia, and hyperkalemia. Among these factors, poor performance status, neutrophilia, prolonged PT and aPTT were significant prognostic factors of death risk in these patients according to the results of Cox's proportional hazard model. We predicted that the median life expectancy was 3.0 days when all of the above 4 factors were present, $5.7{\sim}8.2$ days when 3 of these 4 factors were present, $11.4{\sim}20.0$ days when 2 of the 4 were present, and $27.9{\sim}40.0$ when 1 of the 4 was present, and 77 days when none of these 4 factors were present. Conclusions : In terminally ill cancer patients, we found that the prognostic factors related to reduced survival time were poor performance status, neutrophilia, prolonged PT and prolonged am. The four prognostic factors enabled the prediction of life expectancy in terminally ill cancer patients.

  • PDF

A Study on Risk Assessment Method for Earthquake-Induced Landslides (지진에 의한 산사태 위험도 평가방안에 관한 연구)

  • Seo, Junpyo;Eu, Song;Lee, Kihwan;Lee, Changwoo;Woo, Choongshik
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.694-709
    • /
    • 2021
  • Purpose: In this study, earthquake-induced landslide risk assessment was conducted to provide basic data for efficient and preemptive damage prevention by selecting the erosion control work before the earthquake and the prediction and restoration priorities of the damaged area after the earthquake. Method: The study analyzed the previous studies abroad to examine the evaluation methodology and to derive the evaluation factors, and examine the utilization of the landslide hazard map currently used in Korea. In addition, the earthquake-induced landslide hazard map was also established on a pilot basis based on the fault zone and epicenter of Pohang using seismic attenuation. Result: The earthquake-induced landslide risk assessment study showed that China ranked 44%, Italy 16%, the U.S. 15%, Japan 10%, and Taiwan 8%. As for the evaluation method, the statistical model was the most common at 59%, and the physical model was found at 23%. The factors frequently used in the statistical model were altitude, distance from the fault, gradient, slope aspect, country rock, and topographic curvature. Since Korea's landslide hazard map reflects topography, geology, and forest floor conditions, it has been shown that it is reasonable to evaluate the risk of earthquake-induced landslides using it. As a result of evaluating the risk of landslides based on the fault zone and epicenter in the Pohang area, the risk grade was changed to reflect the impact of the earthquake. Conclusion: It is effective to use the landslide hazard map to evaluate the risk of earthquake-induced landslides at the regional scale. The risk map based on the fault zone is effective when used in the selection of a target site for preventive erosion control work to prevent damage from earthquake-induced landslides. In addition, the risk map based on the epicenter can be used for efficient follow-up management in order to prioritize damage prevention measures, such as to investigate the current status of landslide damage after an earthquake, or to restore the damaged area.