• Title/Summary/Keyword: Hazard identification

Search Result 201, Processing Time 0.026 seconds

Sub-Surface Station Fire Evacuation Research and Best Practice

  • Dowens, Trevor
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.18-21
    • /
    • 2009
  • The basis of modem risk-based safety management is to focus on what might happen and ensure it is designed out of the system by robust hazard identification and risk analysis. However, in the real world things go wrong and it is essential to be prepared for the worst so that the response can minimise harm and loss of property and damage to the environment. Whilst some hazard mitigation measures are aimed at preventing incidents, others are venting escalation. The results of the tests concluded that the most effective means by the control room, both with and without, local station staff assistance using directive public address announcements and CCTV surveillance.

  • PDF

On the Hazard Identification Methods for the Realization of Functional Safety Standards (기능안전 표준들의 구현을 위한 기능 중심의 위험원 식별 방법)

  • Jung, Ho Jeon;Lee, Jae Chon;Oh, Seong Keun
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • To meet the growing needs from a variety of stakeholders, the development of modern systems is getting more complex and thus, the systems failure in the actual operations can potentially become more serious. This is why several international or military standards on systems safety have been published. In spite of the importance of meeting those standards such as IEC 61508 and ISO 26262 in the systems development, the associated practical methods seem deficient since those standards do not provide them. The objective of this paper is to present a method to identify potential hazards in fulfilling the requirements of the safety standards. In particular, the approach taken here is based on applying the functional analysis that covers several levels of the system under development. Note, however, that in the most of the conventional methods for hazards identification, the analysis has been focused on the failure at or underneath the component level of the system. The hazards identification method in this paper would cover the level up to the system by utilizing the functions-oriented approach. The case study of the safety enhancement for locomotive cabs is also discussed.

Verification of Damage Detection Using In-Service Time Domain Response (사용중 시간영역응답을 이용한 손상탐지이론의 검증)

  • Choi, Sang-Hyun;Kim, Dae-Hyork;Park, Nam-Hoi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.9-13
    • /
    • 2009
  • Modal parameters including resonant frequencies and mode shapes are heavily utililized in most damage identification throries for structural health monitoring. However, extracting modal parameters from dynamic responses needs postprocessing which inevitably involves errors in curve-fitting resonants as well as transforming the domain of responses. In this paper, the applicability of a damage identification method based on free vibration responses to the in-sevice responses is experimentally verified. The experiment is performed via applying periodic and nonperiodic moving loads to a simply supported beam and displacement responses are measured. The moving load is simulated using steel balls and a downhill device. The damage identification results show that the in-service response may be applicable to identifying damage in the beam.

Assessement of Rockfall Hazard in the Northeast Region of Ulleung-Do (울릉도 북동부 지역의 낙석재해 위험도 평가)

  • Seo, Yong-Seok;Jang, Hyung-Su;Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.353-363
    • /
    • 2012
  • The geology of Ulleung-Do is dominated by volcanic rocks with low strength and trachytic rocks with high strength but containing vertical joints that yield easily. Consequently, rockfalls along roadcuts are a major geological hazard, with the potential to affect the ring road of Ulleung-Do. In this study, we performed three types of rockfall hazard-risk assessment on the 3-km-long section of the ring road expected to have the highest possibility of rockfall. We used a rockfall ranking sheet in a roadside landslide hazard map, the Slope Stability Inspection Manual for National Highways (Japan), and a rockfall hazard rating system for inspection from the Japan Highway Public Corporation. We also employed the evaluation criteria of 'RHRS' developed by the Federal Highway Administration (FHA). An analysis of roadcuts at 27 sites with regard to geographic and geological conditions resulted in the identification of three classes of rockfall hazard (high, medium, and low). Of note, over 74% of slopes were assessed as high- and medium-class. Finally, a rockfall hazard map of the northeast region of Ulleung-Do was produced based on the evaluation results.

The Proportional Hazards Modeling for Consecutive Pipe Failures Based on an Individual Pipe Identification Method using the Characteristics of Water Distribution Pipes (상수도 배수관로의 특성에 따른 개별관로 정의 방법을 이용한 파손사건 사이의 비례위험모델링)

  • Park, Suwan;Kim, Jung Wook;Jun, Hwan Don
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.

Study on Health Risk Assessment of Non-carcinogenic Chemicals in Drinking Water (음용수 중 유해 화학 물질에 대한 위해성 평가에 관한 연구 - II. 비발암성 화학 물질을 중심으로 -)

  • Chung, Yong;Shin, Dong-Chun;Kim, Jong-Man;Park, Seong-Eun;Yang, Ji-Yeon;Lee, Ja-Koung;Hwang, Man-Sik;Park, Yeon-Shin
    • Environmental Analysis Health and Toxicology
    • /
    • v.10 no.1_2
    • /
    • pp.37-46
    • /
    • 1995
  • The purpose of this research is to estimate a safe environmental level of human exposure to thresholding-acting toxicants in drinking water and recommend the acceptable levels and management plans for maintaining good quality of drinking water' and protecting health hazard. This research has been funded as a national project for three years from 1992 to 1995. This study(the second year, 1993-1994) was conducted to monitor 39 species of noncarcinogenic chemicals such as volatile organic compounds(VOCs), polynuclear aromatic hydrocarbens(PAHs), pesticides and heavy metals of drinking water at some area in six cities of Korea, and evaluate health risk due to these chemicals through four main steps (hazard identification, exposure assessment, dose-response assessment and risk characterization) of risk assessment in drinking water. In hazard identification, 39 species of non-carcinogenic chemicals were identified by the US EPA classification system. In the step of exposure assessment, sampling of tap water from the public water supply system had been conducted from 1993 to 1994, and 39 chemicals were analyzed. Inclose-response assessment for non-carcinogens, reference doses(RfD) and lifetime health advisories(HAs) of lifetime acceptable levels were calculated. In risk characterization of detected chemicals, the hazard quotients of noncarcinogens were less than one except those of manganese and iron in D city.

  • PDF

A Study on Safety Assessment of CTC/EI Interface (열차집중제어장치와 전자연동장치 인터페이스의 안전성평가에 관한 연구)

  • SHIN Seok-kyun;LEE Key-seo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.309-316
    • /
    • 2005
  • In this paper we analyzed a dangerous failure and a safety requirement based on HIA (Hazard Identification and Analysis) of an interface model between CTC (Centralized Traffic Control) system and El (Interlocking) system, and assigned SU (Safety Integrity Level) by way of an risk estimation of the interface, which employed PHA (Preliminary Hazard Analysis) for the interface of the track control system, being managed as separated system between the centralized traffic control system and the interlocking system, An estimation which satisfies a safety reference of the international standard has been achieved through a quantification of the system failure rate and the dangerous failure rate of the interface model.

A Study on the Safety Demonstration of Train Control System (열차제어시스템의 안전입증에 관한 연구)

  • Shin Duc-Ko;Lee Jae-Ho;Lee Kang-Mi;Hwang Jong-Kyu;Joung Eui-Jin;Wang Jong-Bae;Park Young-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.412-418
    • /
    • 2006
  • In this paper we deal with the APARP theory which has been applied for UK railway system and risk assessment method which has been using in the domestic railway system for the safety demonstration. Both techniques are applied to the ATP wayside equipment for interface. Also, fur the applications of each techniques a analysis of the safety activity and a possibility of the application of ALARP theory are evaluated. Finally, we generate requirements of the safety demonstration for the future domestic railway system by way of the analysis of some assumptions and requirement data which can be applied to the risk assessment of ALARP.

Hazardous Area Identification Model using Automated Data Collection(ADC) based on BIM (BIM기반 자동화 데이터 수집기술을 활용한 위험지역 식별 모델)

  • Kim, Hyun-Soo;Lee, Hyun-Soo;Park, Moon-Seo;Lee, Kwang-Pyo;Pyeon, Jae-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.14-23
    • /
    • 2010
  • A considerable number of construction disasters occurs on pathway. A safety management in construction sites is usually performed to prevent accidents in activity areas. This means that safety management level of hazards on pathway is relatively minified. Many researchers have introduced that a hazard identification is fundamental of safety management. Thus, algorithms for helping safety managers' hazardous area identification is developed using automated data collection technology. These algorithms primarily search potential hazardous area by comparing workers' location logs based on real-time locating system and optimal routes based on BIM. And potential hazardous areas is filtered by identified hazardous areas and activity areas. After that, safety managers are provided with information about potential hazardous areas and can establish proper safety countermeasures. This can help improving safety in construction sites.

Joint Reasoning of Real-time Visual Risk Zone Identification and Numeric Checking for Construction Safety Management

  • Ali, Ahmed Khairadeen;Khan, Numan;Lee, Do Yeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.313-322
    • /
    • 2020
  • The recognition of the risk hazards is a vital step to effectively prevent accidents on a construction site. The advanced development in computer vision systems and the availability of the large visual database related to construction site made it possible to take quick action in the event of human error and disaster situations that may occur during management supervision. Therefore, it is necessary to analyze the risk factors that need to be managed at the construction site and review appropriate and effective technical methods for each risk factor. This research focuses on analyzing Occupational Safety and Health Agency (OSHA) related to risk zone identification rules that can be adopted by the image recognition technology and classify their risk factors depending on the effective technical method. Therefore, this research developed a pattern-oriented classification of OSHA rules that can employ a large scale of safety hazard recognition. This research uses joint reasoning of risk zone Identification and numeric input by utilizing a stereo camera integrated with an image detection algorithm such as (YOLOv3) and Pyramid Stereo Matching Network (PSMNet). The research result identifies risk zones and raises alarm if a target object enters this zone. It also determines numerical information of a target, which recognizes the length, spacing, and angle of the target. Applying image detection joint logic algorithms might leverage the speed and accuracy of hazard detection due to merging more than one factor to prevent accidents in the job site.

  • PDF