• Title/Summary/Keyword: Harvesting Frequency

Search Result 194, Processing Time 0.026 seconds

A study of vibration energy harvesting for the bimorph piezoelectric sensor (바이몰프 압전센서의 진동에너지 수확에 관한 연구)

  • Kim, Yong-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.313-319
    • /
    • 2010
  • Vibration energy harvesting is an attractive technique for potential powering of low power devices such as wireless sensors and portable electronic applications. Most energy generator developed to date are single vibration frequency based, and while some efforts have been made to broaden the frequency range of energy harvester. In this work, The effect of energy harvesting were investigated at various vibration frequencies, vibration beams, vibration point and test masses. The maximum output voltage of the bimorph piezoelectric cantilever was shifted according to vibration point. Vibration frequency with maximum output voltage decreased with the increasing length of vibration beam and increasing test mass. The sample with vibration beam length 0.5 L generated a peak output voltage of 32 $V_{rms}$ and shows a 45 % increase in voltage output in comparison to the corresponding original bimorph. It was found that a piezoelectric bimorph has a possibility to be as the energy harvesting cantilever, which is successfully tuned over a vibration frequency range to enable a maximum harvesting energy.

Design of a Vibration-Powered Piezoelectric Energy-Harvesting Module by Considering Variations in Excitation Frequency (외부 가진 가변 주파수를 고려한 압전 진동 에너지 수확 모듈의 설계)

  • Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • A vibration-powered piezoelectric energy harvester yields the maximum power output when its resonant frequency is made equal to the excitation frequency; however, the power output is dramatically decreased when the energy harvester is operated at off-resonance frequency. It has been observed that the resonant frequency of a piezoelectric energy harvester may change with time and that the excitation frequency often varies when the energy harvester is used in real applications. Hence, in this study, we propose a piezoelectric energy-harvesting module that is suitable for excitations in a certain frequency range. The frequency characteristics of the electrical output of the module are studied through analysis and experiment. A simple frequency tuning method is also suggested for the proposed energy-harvesting module; in this method, frequency tuning is achieved by changing the electrical connections between the constituent energy-harvesting units of the module.

Efficient RF Energy Harvesting Algorithm based on Frequency Selective Fading Map (주파수 선택적 페이딩 맵 기반 효율적 무선 에너지 하비스팅 알고리즘)

  • Park, Ji Ho;Hwang, Yu Min;Song, Yu Chan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.24-29
    • /
    • 2015
  • Recently, with developments of various networks, devices and various services, energy efficiency has become one of the most crucial issues with respect to sustainability of mobile devices. For connecting to networks seamlessly to offer services, a scenario of RF energy harvesting which supplies energy to wireless devices with RF signals is assumed. To increase the efficiency of RF energy harvesting, this paper proposes a RF energy harvesting algorithm which is based upon a frequency selective fading map. Through the algorithm, a receiver of mobile device can get fading information at each frequency and select a frequency which has the best quality. At the end, the simulation result demonstrates its superiority by showing a 4.45dB improvement in comparison to a deep fading frequency point.

A Study on the Vibration Characteristics of a Head-Feeding Combine by Spectral Analysis (스펙트럼 해석에 의한 자탈형 콤바인의 진동 특성 고찰)

  • ;井上英二
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • Experiments under the stationary and harvesting condition, were performed in order to investigate the vibration characteristics of a head-feeding combine. 6 degrees of freedom components of acceleration at the location of the center of the gravity, and 3 degrees of freedom components of acceleration at the location of the operator seat were measured independently. The vibration characteristics of the combine were estimated with the power spectral density of the time series data of accelerations. From this research, the following results were obtained. 1. Vibration of a head-feeding combine under the stationary condition(engine, thresher and cutter are driven without harvesting) is mainly influenced by the engine. Further, 1/3, 1/2 (sub-harmonic) frequency components of the engine are observed besides engine driving frequency component(45Hz). 2. Vibration of a head-feeding combine under the harvesting condition is influenced by the engine, threshing unit and driving unit. Namely, some kinds of vibration frequency components in harvesting are observed compared with stationary condition. Further, sub-harmonic frequency components of the engine are observed besides engine driving frequency component as same as stationary condition. From these results, it may be concluded that vibration of a head-feeding combine is characteristics of semi-periodic and nonlinear vibration.

  • PDF

Effects of Harvesting Frequency and Fertilization Levels on Botanical Composition and Forage Productivity of Alpine Grassland at 800m Altitude (산지초지를 위한 대관령 표고 800m에서 예취횟수와 시비수준이 목초의 식생구성비율, 건물수량 및 사료성분에 미치는 영향)

  • Oh, Seung Min;Kim, Ji Yun;Lee, Bae Hun;Peng, Jinglun;Chemere, Befekadu;Nejad, Jalil Ghassemi;Sung, Kyung Il;Kim, Byong Wan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.2
    • /
    • pp.124-128
    • /
    • 2016
  • The objective of this research was to determine the effects of harvesting frequency and fertilization levels on botanical composition, dry matter yield, and forage feed compositions of Alpine grassland at 800 m altitude. This research lasted for three years at National Alpine Agricultural Research Institute in Pyeongchang with two harvesting frequency schedules (two and three times annually) and two levels of fertilizer application (conventional level of fertilizer at 280-200-240 kg/ha and a lower level of fertilizer at 200-200-200 kg/ha for N, $P_2O_5$, and $K_2O$). Mixture combinations with seeding rate (kg/ha) were as follows: Orchardgrass 18, Tall fescue 9, Timothy 8, Kentucky bluegrass 3, and Ladino Clover 2. The gramineae ratio ranged from 93.2 to 95.3%. Therefore, gramineae forage was considered as the dominant plant in this experiment. No significant (p>0.05) difference was observed in forage dry matter yield between the two harvesting frequency treatments (two times at 9.8 ton/ha and three times at 8.6 ton/ha). However, forage dry matter yield in the two times of harvesting frequency tended to be greater than that in the three times of harvesting frequency. Significantly (p<0.05) higher forage dry matter yield in the standard fertilization level group than the lower fertilization level group (9.8 ton/ha vs. 8.7 ton/ha) was observed. However, there was no significant (p>0.05) difference in forage crude protein concentration between the two harvesting frequency treatment groups, although the concentration in the group with three times of harvesting frequency tended to be higher. In contrast, crude fiber concentration in the group with two times of harvesting frequency tended to be higher, although the difference was not statistically significant (p>0.05). Crude protein, ether extract, crude fiber, and organic matter concentrations were not significantly (p>0.05) different between the two groups with different fertilization levels. Based on these results, it was concluded that the group with two times of harvesting frequency with conventional fertilization level might be proper for obtaining better forage productivity for Alpine grassland at 800 m altitude.

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

A Preliminary Study on Piezo-aeroelastic Energy Harvesting Using a Nonlinear Trailing-Edge Flap

  • Bae, Jae-Sung;Inman, Daniel J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.407-417
    • /
    • 2015
  • Recently, piezo-aeroelastic energy harvesting has received greater attention. In the present study, a piezo-aeroelastic energy harvester using a nonlinear trailing-edge flap is proposed, and its nonlinear aeroelastic behaviors are investigated. The energy harvester is modeled using a piezo-aeroelastic model of a two-dimensional typical section airfoil with a trailing-edge flap (TEF). A piezo-aeroelastic analysis is carried out using RL and time-integration methods, and the results are verified with the experimental data. The linearizing method using a describing function is used for the frequency domain analysis of the nonlinear piezo-aeroelastic system. From the linear and nonlinear piezo-aeroelastic analysis, the limit cycle oscillation (LCO) characteristics of the proposed energy harvester with the nonlinear TEF are investigated in both the frequency and time domains. Finally, the authors discuss the air speed range for effective piezo-aeroelastic energy harvesting.

Effect of Harvesting Frequency, Variety and Leaf Maturity on Nutrient Composition, Hydrogen Cyanide Content and Cassava Foliage Yield

  • Hue, Khuc Thi;Van, Do Thi Thanh;Ledin, Inger;Wredle, Ewa;Sporndly, Eva
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1691-1700
    • /
    • 2012
  • The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter), K98-7 (medium bitter) and a local (sweet), were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM) and crude protein (CP) production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF), acid detergent fibre (ADF) and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN) content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05). Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves.