• Title/Summary/Keyword: Harris Algorithm

Search Result 39, Processing Time 0.03 seconds

A Study on the 3D Shape Reconstruction Algorithm of an Indoor Environment Using Active Stereo Vision (능동 스테레오 비젼을 이용한 실내환경의 3차원 형상 재구성 알고리즘)

  • Byun, Ki-Won;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • In this paper, we propose the 3D shape reconstruction method that combine the mosaic method and the active stereo matching using the laser beam. The active stereo matching method detects the position information of the irradiated laser beam on object by analyzing the color and brightness variation of left and right image, and acquires the depth information in epipolar line. The mosaic method extracts feature point of image by using harris comer detection and matches the same keypoint between the sequence of images using the keypoint descriptor index method and infers correlation between the sequence of images. The depth information of the sequence image was calculated by the active stereo matching and the mosaic method. The merged depth information was reconstructed to the 3D shape information by wrapping and blending with image color and texture. The proposed reconstruction method could acquire strong the 3D distance information, and overcome constraint of place and distance etc, by using laser slit beam and stereo camera.

  • PDF

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

Pre-processing algorithm by color correction based on features for multi-view video coding (특징점 기반 색상 보정을 이용한 다시점 비디오 부호화 전처리 기법)

  • Park, Sung-Hee;Yoo, Ji-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.472-474
    • /
    • 2011
  • 본 논문에서는 특징점 기반 색상보정을 이용한 다시점 비디오 부호화 전처리 방법을 제안 한다. 다시점 영상은 조명 및 카메라 간의 특성차이로 인해 인접 시점 간 색상차를 보인다. 이를 보정하기 위한 여러 가지 방법 중, 본 논문에서는 영상간의 대응되는 특징점들을 기반으로 상대적인 카메라의 특성을 모델링하고 이를 통해 색상을 보정하는 방법을 이용하였다. 대응되는 특징점을 추출하기 위해 Harris 코너 검출법을 사용하였고, 모델링 된 수식의 계수는 가우스-뉴튼 순환 기법으로 추정하였다. 참조 영상을 기준으로 보정해야할 타겟 영상의 색상값을 RGB 성분별로 보정했다. 테스트 영상을 가지고 실험한 결과 제안한 전처리 방법으로 보정을 하였을 경우, 전처리 과정을 거치지 않았을 때보다 화질 및 압축효율이 향상됨을 알 수 있었다. 또한 누적 히스토그램 기반의 전처리 방식과 비교했을 때, PSNR은 성분별로 0.5 dB ~ 0.8dB 정도 올랐고 Bit rate는 14% 정도 절감되는 효과를 확인 하였다.

  • PDF

Improvment of Accuracy of Projective Transformation Matrix for Image Mosaicing (영상 모자이킹을 위한 사영 변환 행렬의 정밀도 개선)

  • 노현영;이상욱
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.226-230
    • /
    • 2002
  • This paper proposes a method of improvement of accuracy of projective transformation matrix for Image Mosaicing. Using shift theorem, we extracted global translation components between images and using translation components, we found matching points between images so we solve general matching point problem we extracted highly trusted matching point using RANSAC algorithm. we normalized matching point coordinates and improved accuracy of projective transformation matrix.

  • PDF

Vision-based AGV Parking System (비젼 기반의 무인이송차량 정차 시스템)

  • Park, Young-Su;Park, Jee-Hoon;Lee, Je-Won;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • This paper proposes an efficient method to locate the automated guided vehicle (AGV) into a specific parking position using artificial visual landmark and vision-based algorithm. The landmark has comer features and a HSI color arrangement for robustness against illuminant variation. The landmark is attached to left of a parking spot under a crane. For parking, an AGV detects the landmark with CCD camera fixed to the AGV using Harris comer detector and matching descriptors of the comer features. After detecting the landmark, the AGV tracks the landmark using pyramidal Lucas-Kanade feature tracker and a refinement process. Then, the AGV decreases its speed and aligns its longitudinal position with the center of the landmark. The experiments showed the AGV parked accurately at the parking spot with small standard deviation of error under bright illumination and dark illumination.

Development of a Cost-Effective Tele-Robot System Delivering Speaker's Affirmative and Negative Intentions (화자의 긍정·부정 의도를 전달하는 실용적 텔레프레즌스 로봇 시스템의 개발)

  • Jin, Yong-Kyu;You, Su-Jeong;Cho, Hye-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.171-177
    • /
    • 2015
  • A telerobot offers a more engaging and enjoyable interaction with people at a distance by communicating via audio, video, expressive gestures, body pose and proxemics. To provide its potential benefits at a reasonable cost, this paper presents a telepresence robot system for video communication which can deliver speaker's head motion through its display stanchion. Head gestures such as nodding and head-shaking can give crucial information during conversation. We also can assume a speaker's eye-gaze, which is known as one of the key non-verbal signals for interaction, from his/her head pose. In order to develop an efficient head tracking method, a 3D cylinder-like head model is employed and the Harris corner detector is combined with the Lucas-Kanade optical flow that is known to be suitable for extracting 3D motion information of the model. Especially, a skin color-based face detection algorithm is proposed to achieve robust performance upon variant directions while maintaining reasonable computational cost. The performance of the proposed head tracking algorithm is verified through the experiments using BU's standard data sets. A design of robot platform is also described as well as the design of supporting systems such as video transmission and robot control interfaces.

Saliency Detection based on Global Color Distribution and Active Contour Analysis

  • Hu, Zhengping;Zhang, Zhenbin;Sun, Zhe;Zhao, Shuhuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5507-5528
    • /
    • 2016
  • In computer vision, salient object is important to extract the useful information of foreground. With active contour analysis acting as the core in this paper, we propose a bottom-up saliency detection algorithm combining with the Bayesian model and the global color distribution. Under the supports of active contour model, a more accurate foreground can be obtained as a foundation for the Bayesian model and the global color distribution. Furthermore, we establish a contour-based selection mechanism to optimize the global-color distribution, which is an effective revising approach for the Bayesian model as well. To obtain an excellent object contour, we firstly intensify the object region in the source gray-scale image by a seed-based method. The final saliency map can be detected after weighting the color distribution to the Bayesian saliency map, after both of the two components are available. The contribution of this paper is that, comparing the Harris-based convex hull algorithm, the active contour can extract a more accurate and non-convex foreground. Moreover, the global color distribution can solve the saliency-scattered drawback of Bayesian model, by the mutual complementation. According to the detected results, the final saliency maps generated with considering the global color distribution and active contour are much-improved.

Mathematical Model and Design Optimization of Reduction Gear for Electric Agricultural Vehicle

  • Pratama, Pandu Sandi;Byun, Jae-Young;Lee, Eun-Suk;Keefe, Dimas Harris Sean;Yang, Ji-Ung;Chung, Song-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In electric agricultural machine the gearbox is used to increase torque and lower the output speed of the motor shaft. The gearbox consists of several shafts, helical gears and spur gears works in series. Optimization plays an important role in gear design as reducing the weight or volume of a gear set will increase its service life and improve the bearing capacity. In this paper the basic design parameters for gear like shaft diameter and face width are considered as the input variables. The bending stress and material volume is considered as the objective function. ANSYS was used to investigate the bending stress when the variable was changed. Artificial Neural Network (ANN) was used to obtain the mathematical model of the system based on the bending stress behaviour. The ANN was used since the output system is nonlinear. The Genetic Algorithm (GA) technique of optimization is used to obtain the optimized values of shaft diameter and face width on the pinion based on the ANN mathematical model and the results are compared as that obtained using the traditional method. The ANN and GA were performed using MATLAB. The simulation results were shown that the proposed algorithm was successfully calculated the value of shaft diameter and face width to obtain the minimal bending stress and material volume of the gearbox.

Dynamic Characteristics of Indeterminate Rotor Systems with Angular Contact Ball Bearings Subject to Axial and Radial Loads

  • Hong, Seong-Wook;Kang, Joong-Ok;Yung C. Shin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.61-71
    • /
    • 2002
  • This paper presents the dynamic analysis of indeterminate rotor systems with angular contact ball bearings subject to axial and radial loads. The reaction forces against applied radial loads significantly influence the dynamic characteristics of angular contact ball bearings. However, the reaction forces are hard to determine in the case of indeterminate rotor-bearing systems. To this end, this paper proposes a finite element model for indeterminate rotor systems with angular contact ball bearings. An improved bearing model is adopted which is originated from the Harris's bearing dynamic model. The bearing model is also extended to include centrifugal forces due to the ball and inner ring. This paper utilizes a new iterative algorithm for general, indeterminate rotor systems with angular contact ball bearings. This examples are provided to illustrate the dynamic characteristics of rotor systems with angular contact ball bearings subject to axial and radial loads. The experimental and numerical results prove that the proposed method is useful for the dynamic analysis of indeterminate rotor systems with angular contact ball bearings.

A Practical Solution toward SLAM in Indoor environment Based on Visual Objects and Robust Sonar Features (가정환경을 위한 실용적인 SLAM 기법 개발 : 비전 센서와 초음파 센서의 통합)

  • Ahn, Sung-Hwan;Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2006
  • Improving practicality of SLAM requires various sensors to be fused effectively in order to cope with uncertainty induced from both environment and sensors. In this case, combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes, extracting robust point and line features from sonar data and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. And fusing sonar features and visual objects through EKF-SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in indoor environment. The performance of the proposed algorithm was verified by experiments in home -like environment.

  • PDF