• Title/Summary/Keyword: Harmony Search Algorithm

Search Result 116, Processing Time 0.032 seconds

An Improved Harmony Search Algorithm and Its Application in Function Optimization

  • Tian, Zhongda;Zhang, Chao
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1237-1253
    • /
    • 2018
  • Harmony search algorithm is an emerging meta-heuristic optimization algorithm, which is inspired by the music improvisation process and can solve different optimization problems. In order to further improve the performance of the algorithm, this paper proposes an improved harmony search algorithm. Key parameters including harmonic memory consideration (HMCR), pitch adjustment rate (PAR), and bandwidth (BW) are optimized as the number of iterations increases. Meanwhile, referring to the genetic algorithm, an improved method to generate a new crossover solutions rather than the traditional mechanism of improvisation. Four complex function optimization and pressure vessel optimization problems were simulated using the optimization algorithm of standard harmony search algorithm, improved harmony search algorithm and exploratory harmony search algorithm. The simulation results show that the algorithm improves the ability to find global search and evolutionary speed. Optimization effect simulation results are satisfactory.

Study on Improvement of Convergence in Harmony Search Algorithms (Harmony Search 알고리즘의 수렴성 개선에 관한 연구)

  • Lee, Sang-Kyung;Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.401-406
    • /
    • 2011
  • In order to solve a complex optimization problem more efficiently than traditional approaches, various meta-heuristic algorithms such as genetic algorithm, ant-colony algorithm, and harmony search algorithm have been extensively researched. Compared with other meta-heuristic algorithm, harmony search algorithm shows a better result to resolve the complex optimization issues. Harmony search algorithm is inspired by the improvision process of musician for most suitable harmony. In general, the performance of harmony search algorithm is determined by the value of harmony memory considering rate, and pitch adjust rate. In this paper, modified harmony search algorithm is proposed in order to derive best harmony. If the optimal solution of a specific problem can not be found for a certain period of time, a part of original harmony memory is updated as the selected suitable harmonies. Experimental results using test function demonstrate that the updated harmony memory can induce the approximation of reliable optimal solution in the short iteration, because of a few change of fitness.

Behavior Learning and Evolution of Swarm Robot based on Harmony Search Algorithm (Harmony Search 알고리즘 기반 군집로봇의 행동학습 및 진화)

  • Kim, Min-Kyung;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.441-446
    • /
    • 2010
  • Each robot decides and behaviors themselves surrounding circumstances in the swarm robot system. Robots have to conduct tasks allowed through cooperation with other robots. Therefore each robot should have the ability to learn and evolve in order to adapt to a changing environment. In this paper, we proposed learning based on Q-learning algorithm and evolutionary using Harmony Search algorithm and are trying to improve the accuracy using Harmony Search Algorithm, not the Genetic Algorithm. We verify that swarm robot has improved the ability to perform the task.

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

Harmony search algorithm for optimum design of steel frame structures: A comparative study with other optimization methods

  • Degertekin, S.O.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.391-410
    • /
    • 2008
  • In this article, a harmony search algorithm is presented for optimum design of steel frame structures. Harmony search is a meta-heuristic search method which has been developed recently. It is based on the analogy between the performance process of natural music and searching for solutions of optimization problems. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) and AISC Allowable Stress Design (ASD) specifications, maximum (lateral displacement) and interstorey drift constraints, and also size constraint for columns were imposed on frames. The results of harmony search algorithm were compared to those of the other optimization algorithms such as genetic algorithm, optimality criterion and simulated annealing for two planar and two space frame structures taken from the literature. The comparisons showed that the harmony search algorithm yielded lighter designs for the design examples presented.

Hybrid of the fuzzy logic controller with the harmony search algorithm to PWR in-core fuel management optimization

  • Mahmoudi, Sayyed Mostafa;Rad, Milad Mansouri;Ochbelagh, Dariush Rezaei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3665-3674
    • /
    • 2021
  • One of the important parts of the in-core fuel management is loading pattern optimization (LPO). The loading pattern optimization as a reasonable design of the in-core fuel management can improve both economic and safe aspects of the nuclear reactor. This work proposes the hybrid of fuzzy logic controller with harmony search algorithm (HS) for loading pattern optimization in a pressurized water reactor. The music improvisation process to find a pleasing harmony is inspiring the harmony search algorithm. In this work, the adjustment of the harmony search algorithm parameters such as the bandwidth and the pitch adjustment rate are increasing performance of the proposed algorithm which is done through a fuzzy logic controller. Hence, membership functions and fuzzy rules are designed to improve the performance of the HS algorithm and achieve optimal results. The objective of the method is finding an optimum core arrangement according to safety and economic aspects such as reduction of power peaking factor (PPF) and increase of effective multiplication factor (Keff). The proposed approach effectiveness has been tried in two cases, Michalewicz's bivariate function problem and NEACRP LWR core. The results show that by using fuzzy harmony search algorithm the value of the fitness function is improved by 15.35%. Finally, with regard to the new solutions proposed in this research it could be used as a trustworthy method for other optimization issues of engineering field.

Parameter Calibration of the Nonlinear Muskingum Model using Harmony Search

  • Geem, Zong-Woo;Kim, Joong-Hoon;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.3-10
    • /
    • 2000
  • A newly developed heuristic algorithm, Harmony Search, is applied to the parameter calibration problem of the nonlinear Muskingum model. The Harmony Search could, mimicking the improvisation of music player, find better parameter values for in the nonlinear Muskingum model than five other methods including another heuristic method, genetic algorithm, in the aspect of SSQ(the sum of the square of the deviations between the observed and routed outflows) as well as in the aspects of SAD(the sum of the absolute value of the deviations), DPO(deviations of peak of routed and actual flows) and DPOT(deviatios of peak time of routed and actual outflow). Harmony Search also has the advantage that it does not require the process of asuming the initial values of desing parameters. The sensitivity analysis of Harmony Memory Considering Rate showed that relatively large values of Harmony Memory Considering Rate makes the Harmony Search converge to a better solution.

  • PDF

Parameter Calibration o fthe Nonlinear Muskingum Model using Harmony Search

  • Geem, Jong-Woo;Kim, Joong-Hoon;Yoon, Yong-Nam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.3-10
    • /
    • 2000
  • A newly developed heuristic algorithm, Harmony Search, is applied to the parameter calibration problem of the nonlinear Muskingum model. The Harmony Search could, mimicking the improvisation of music players, find better parameter values for in the nonlinear Muskingum model than five other methods including another heuristic method, genetic algorithm, in the aspect of SSQ (the sum of the square of the deviations between the observed and routed outflows) as well as in the aspects of SAD (the sum of the absolute value of the deviations), DPO (deviations of peak of routed and actual flows) and DPOT (deviations of peak time of rented and actual outflow). Harmony Search also has the advantage that it does not require the process of assuming the initial values of design parameters. The sensitivity analysis of Harmony Memory Considering Rate showed that relatively large values of Harmony Memory Considering Rate makes the Harmony Search converse to a better solution.

  • PDF

Partial Transmit Sequence Optimization Using Improved Harmony Search Algorithm for PAPR Reduction in OFDM

  • Singh, Mangal;Patra, Sarat Kumar
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.782-793
    • /
    • 2017
  • This paper considers the use of the Partial Transmit Sequence (PTS) technique to reduce the Peak-to-Average Power Ratio (PAPR) of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS) is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search-based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.

Development of the Meta-heuristic Optimization Algorithm: Exponential Bandwidth Harmony Search with Centralized Global Search (새로운 메타 휴리스틱 최적화 알고리즘의 개발: Exponential Bandwidth Harmony Search with Centralized Global Search)

  • Kim, Young Nam;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.8-18
    • /
    • 2020
  • An Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was developed to enhance the performance of a Harmony Search (HS). EBHS-CGS added two methods to improve the performance of HS. The first method is an improvement of bandwidth (bw) that enhances the local search. This method replaces the existing bw with an exponential bw and reduces the bw value as the iteration proceeds. This form of bw allows for an accurate local search, which enables the algorithm to obtain more accurate values. The second method is to reduce the search range for an efficient global search. This method reduces the search space by considering the best decision variable in Harmony Memory (HM). This process is carried out separately from the global search of the HS by the new parameter, Centralized Global Search Rate (CGSR). The reduced search space enables an effective global search, which improves the performance of the algorithm. The proposed algorithm was applied to a representative optimization problem (math and engineering), and the results of the application were compared with the HS and better Improved Harmony Search (IHS).