• Title/Summary/Keyword: Harmonics spectra

Search Result 43, Processing Time 0.022 seconds

A Research Trend on Film Thickness Dependence of Ac High Feld for Low Density Polyethylene (저밀도 폴리에틸렌을 위한 고전계 파형의 필름 두께의존성에 관한 연구 동향)

  • Jung, Sung-Chan;Rho, Jung-Hyun;Lee, Joo-Hong;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1988-1989
    • /
    • 2007
  • Polyethylene is widely used as the insulator for power cable. To investigate the conduction mechanism for power cable insulation under ac high field, it is very important to acquire the dissipation current under actual running field. Recently, we have developed the unique system, which make possible to observe the nonlinear dissipation current waveform. In this system, to observe the nonlinear properties with high accuracy, capacitive current component is canceled by using inverse capacitive current signal instead of using the bridge circuit for canceling it. We have already reported that the dissipation currents of $40\;{\mu}m$ thick LDPE film at 10 kV/mm and over 140 Hz, it starts to show nonlinearity and odd number's harmonics were getting large. To investigate the conduction mechanis ms in this region, especially space charge effect, various kinds of estimation, such as time variations of instantaneous resistivity for one cycle, FFT spectra of dissipation current waveforms and so on, has been examined. As the results of these estimations, it was found that the dissipation current will depend on not only the instantaneous value of electric field but also the time differential of applied electric field due to taking a balance between applied field and internal field. Furthermore, two large peaks of dissipation current for each half cycle were observed under certain condition. In this paper, to clarify the reason why it shows two peaks for each half cycle, the film thickness dependences of dissipation current waveforms were observed by using the three different thickness LDPE films.

  • PDF

Second Order Nonlinear Optical Polyimides Containing Organic Chromophores with an Oxadiazole Segment (옥사디아졸 결합의 유기 발색단이 도입된 이차비선형 광학 이미드 고분자)

  • Do, Jung Yun;Kim, Bong Gun;Kwon, Ji-Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • It is essential that second order nonlinear optical materials have low optical propagation losses in the wavelengths of second harmonic generation for practical applications in waveguides. Three dipolar chromophores substituted with nitro, cyano, and alkyl sulfone as an electron withdrawing group were prepared. The UV-Vis absorption spectra of the cyano and alkylsulfone chromophores showed a blue-shift compared to the nitro chromophore. The introduction of oxadiazole segment in the chromophore structure led to similar spectral shift. The blue-shift can produce low optical loses at second harmonics. The chromophores were successfully attached to a polyimide, yielding side chain polymers. The nonlinear optical property of the prepared optical polymers was determined by measuring electro-optic coefficient at 1.55 mm. The polymers exhibited high glass transition temperature of over $185^{\circ}C$ and thermal stability to $300^{\circ}C$ through differential scanning calorimeter analysis and thermal gravimetric analysis.

Tidal and Sub-tidal Current Characteristics in the Central part of Chunsu Bay, Yellow Sea, Korea during the Summer Season (서해 천수만 중앙부의 하계 조류/비조류 특성)

  • Jung, Kwang Young;Ro, Young Jae;Kim, Baek Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.2
    • /
    • pp.53-64
    • /
    • 2013
  • This study analyzed the ADCP records along with wind by KMA and discharge records at Seosan A-, B-district tide embankment by KRC for 33 days obtained in the Chunsu Bay, Yellow Sea, Korea spanning from July 29 to August 30, 2010. Various analyses include descriptive statistics, harmonic analysis of tidal constituents, spectra and coherence, complex correlation, progressive vector diagram and cumulative curves to understand the tidal and sub-tidal current characteristics caused by local wind and discharge effect. Observed current speed ranges from -30 to 40 (cm/sec), with standard deviation from 1.7 (cm/sec) at bottom to 18.7 (cm/sec) at surface. According to the harmonic analysis results, the tidal current direction show NNW-SSE. The magnitudes of semi-major axes range from 9.4 to 14.8 (cm/sec) for M2 harmonic constituent and from 4.4 to 7.0 (cm/sec) for S2, respectively. And the magnitudes of semi-minor axes range from 0.1 to 0.5 (cm/sec) for M2 and from 0.4 to 1.4 (cm/sec) for S2, respectively. In the spectral analysis results in the frequency domain, we found 3~6 significant spectral peaks for band-passed wind and residual current of all depth. These peak periods represent various periodicities ranging from 2 to 8 (days). In the coherency analysis results between band-passed wind and residual current of all depth, several significant coherencies could be resolved in 3~5 periodicities within 2.8 (days). Highest coherency peak occurred at 4.6 (day) with 1.2-day phase lag of discharge to band-passed residual current. The progressive vector of wind and residual current travelled to northward at all layers, and the travel distance at middle layer was greater than surface layer distance. The Northward residual current was caused by a seasonal southern wind, and the density-driven current formed by fresh water input effected southward residual current. The sub-tidal current characteristics is determined by seasonal wind force and fresh water inflow in the Chunsu Bay, Yellow Sea, Korea.