• Title/Summary/Keyword: Harmonics simulation

Search Result 507, Processing Time 0.031 seconds

Simulation of Matrix Converter Using PSIM (PSIM을 이용한 매트릭스 컨버터의 시뮬레이션)

  • Park G.L.;Choi J.H.;Kim T.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.635-638
    • /
    • 2003
  • In the paper, a three-phase-in three-phase-out Matrix Converter(MC) for the PMSM Is simulated by the PSIM simulator. A lighter L-C filters are installed at the input side of the Converter to remove the current harmonics around the switching frequency. In modelling the Matrix Converter, the PSIM is the powerful tool that the basic researches can be quickly performed within the given periods, because the simulation calculation by PSIM is very fast, compared to other simulators such as Matlab, Saber, and Pspice.

  • PDF

Optimal Angle Error Reduction of Magnetic Position Sensor by 3D Finite Element Method

  • Kim, Ki-Chan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.454-459
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic position sensor using hall effect elements. The angle detection simulation for the magnetic position sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from permanent magnet in the air-gap in the vicinity of hall effect elements. For the Taguchi method, three design parameters related to position of hall effect elements and shape of back yoke are selected. The characteristics of optimal magnetic position sensor are compared with those of original one in terms of simulation as well as experiment. Finally, the performances of the motor adopting original model and optimal model are represented for the purpose of verification of motor performance due to signals from magnetic position sensor.

Single-Stage High Power Factor Converter for $90-260V_{rms}$ Input ($90-260V_{rms}$ 입력범위를 갖는 단일전력단 고역률 컨버터)

  • Kim Hag-Wone;Moon Gun-Woo;Cho Kwan-Youl;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.205-210
    • /
    • 2001
  • A new single stage power factor corrected AC/DC converter has been proposed, that is unified with buck topology and suitable for universal input. The design example of the proposed converter lot 5V 12A application has been presented. The design considerations and simulation results for the proposed converter have been shown. The simulation results show that the line input current harmonics can meet IEC 1000-3-2 Class D requirements for the line input voltage from 90 to 260V.

  • PDF

A Multipulse-Voltage Source Rectifier System with a Three-Phase Diode Circuit in order to improve the Input Current Waveforms (입력 전류 파형 개선을 위한 다펄스 3상 다이오드 전압원 정류 시스템)

  • Im, Seong-Goun;Park, Hyun-Chul;Lee, Seong-Ryong;Yu, Chul-Ro
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.853-855
    • /
    • 1993
  • In this paper, a further improved system obtaining very low distorted waveforms of input ac currents of three phase rectifier circuit is proposed. The proposed system consists of an uncomplicated 24 pulse diode bridge rectifier that is transformerless, by adding only switching circuit which consists of two switchs to conventional system. Also to optimum the effectiveness or the harmonic reduction, the optimum turn ratio of an autotransformer and the optimum switching control angle are decided by computer simulation. And then, the voltage waveform obtained has a total harmonic distortion of 8.1%, and the predominant harmonics 23th and 25th. This paper describes operation principle, analysis of the waveforms of input voltage and current. The theoretial results are verified through simulation.

  • PDF

A New Space Vector Random Position PWM Scheme (새로운 공간벡터 Random Position PWM기법)

  • Kim, Hoe-Geun;Lim, Young-Cheol;Na, Seok-Hwan;Jung, Young-Gook
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.168-174
    • /
    • 2001
  • In this paper, a new space vector RPPWM (Random Position PWM) is proposed. In the proposed RPPWM, each of three phase pulses is located randomly in each switching interval. Based on the space vector modulation technique, the duty ratio of the pulses is calculated. Along with the randomization of the PWM pulses, we can obtain the effects of spread spectra of voltage, current as in the case of randomly changed switching frequency. To verify the validity of the proposed RPPWM, simulation study was tried using Matlab/simulink. The main model described in Simulink block diagrams includes the space vector modulation block, pulse position randomization block, inverter block, 3 phase induction motor block, and so on. By the simulation study, the harmonics of the output voltage, and the current of inverter are predicted in different PWM methods- SVPWM, LLPWM, proposed RPPWM.

  • PDF

Control Method for Performance Improvement of BLDC Motor used for Propulsion of Electric Propulsion Ship (전기추진선박의 추진용으로 사용되는 브러시리스 직류전동기의 제 어방법에 따른 성능향상에 관한 연구)

  • Jeon, Hyeonmin;Hur, Jaejung;Yoon, Kyoungkuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.802-808
    • /
    • 2019
  • DC motors are used extensively on shipboard, including as the ship's winch operating motor, owing to their simple speed control and excellent output torque characteristics. Moreover, they were used as propulsion motors in the early days of electric propulsion ships. However, mechanical rectifiers, such as brushes, used in DC motors have certain disadvantages. Hence, brushless DC (BLDC) motors are increasingly being used instead. While the electrical characteristics of both types of motors are similar, BLDC motors employ electronic rectifying devices, which use semiconductor elements, instead of mechanical rectifying devices. The inverter system for driving conventional BLDC motors uses a two-phase excitation method so that the waveform of the back electromotive force becomes trapezoidal. This causes harmonics and torque ripple in the phase current switching period in which the winding wire through which the current flows is changed. Researchers have studied and presented various methods to reduce the harmonics and torque ripple. This study applies a cascaded H-bridge multilevel inverter, which implements a proportional-integral speed current controller algorithm in the driving circuit of the BLDC motor for electric propulsion ships using a power analysis program. The simulation results of the modeled BLDC motor show that the driving method of the proposed BLDC motor improves the voltage waveform of the input side of the motor and remarkably reduces the harmonics and torque ripple compared with the conventional driving method.

Digital predistorters for communication systems with dynamic spectrum allocation (가변 스펙트럼 할당을 지원하는 광대역 전력 증폭기를 위한 디지털 전치왜곡기)

  • Choi, Sung-Ho;Seo, Sung-Won;Mah, Bak-Il;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.307-314
    • /
    • 2011
  • A new predistortion technique for dynamic spectrum allocation systems such as cognitive radio (CR) is proposed. The system model considered in this paper occupies a small band at a time, but the center frequency can be changed in the wide range of frequency. In this scenario. the front-end filter may not eliminate the harmonics of the power amplifier (PA) output. The proposed PD reduces the spectral regrowth of the fundamental signal at the carrier frequency (${\omega}_0$) and removes the harmonics ($2{\omega}_0$, $3{\omega}_0$, ...) at the same time. The proposed PD structure is composed of multiple predistorters (PDs) centered at integer multiples of ${\omega}_0$. The PD at ${\omega}_0$ is for removing spectral regrowth of the fundamental signal, and the others are for harmonic reduction. In the proposed PD structure, parameters of PDs are found jointly. Simulation results show that the spectral regrowth can be reduced by 20dB, and the 2nd and 3rd harmonics can be reduced down to -70dB from the power of the fundamental signal.

Analytic Comparison of LCL Filter Characteristics of Three-phase Grid-connected Inverter by On/Off-line Simulation Tools (온/오프라인 시뮬레이션 툴을 이용한 계통연계형 인버터의 LCL 필터 특성 분석비교)

  • Lee, Gang;Cha, Hanju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.16-22
    • /
    • 2020
  • The characteristics of the LCL filter for grid-connected inverters have been discussed in academia and industry. An online simulation tool was applied to compare and analyze the difference between the LCL filter and L filter. LCL filters were modeled and simulated using a range of professional simulation simulators, and the LCL filters were found to have good filtering effects for high-frequency harmonics. First, this paper summarizes the transfer functions of the LCL filter and provides the Bode plot diagram. The accuracy and validity of the filter attenuation characteristics were confirmed by a fast Fourier transform based on off-line simulation tools, such as PSIM and MATLAB, depending on the given parameters of the LCL filter. Finally, the Typhoon HIL402 real-time simulation was performed for hardware in the loop simulation to verify the actual filtering characteristics of the LCL filter.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

A Study on the Integrated Simulation and Condition Monitoring Scheme for a PMSG-Based Variable Speed Grid-Connected Wind Turbine System under Fault Conditions (PMSG 적용 가변속 계통연계형 풍력발전 시스템의 통합 시뮬레이션 및 스위치 개방고장 진단기법 연구)

  • Kim, Kyeong-Hwa;Song, Hwa-Chang;Choi, Byoung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.65-78
    • /
    • 2013
  • To analyze influences under open fault conditions in switching devices, an integrated simulation and condition monitoring scheme for a permanent magnet synchronous generator (PMSG) based variable speed grid-connected wind turbine system are presented. Among various faults in power electronics components, the open fault in switching devices may arise when the switches are destructed by an accidental over current, or a fuse for short protection is blown out. Under such a faulty condition, the grid-side inverter as well as the generator-side converter does not operate normally, producing an increase of current harmonics, and a reduction in output and efficiency. As an effective way for a condition monitoring of generation system by online basis without requiring any diagnostic apparatus, the estimation schemes for generated voltage, flux linkage, and stator resistance are proposed and the validity of the proposed scheme is proved through comparative simulations.