• 제목/요약/키워드: Harmonics and reactive power

검색결과 132건 처리시간 0.022초

Parallel-Connected Magnetic Energy Recovery Switch Used as a Continuous Reactive Power Controller

  • Wei, Yewen;Fang, Bo;Kang, Longyun;Huang, Zhizhen;liu, Teguo
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1494-1503
    • /
    • 2016
  • Power quality promotion has received increasing attention because of the wide use of semiconductor devices in recent decades. Reactive power regulation is crucial to ensuring the stable operation of power systems. In this study, a continuous reactive power controller, which is referred to as a parallel-connected magnetic energy recovery switch (MERS), is developed to regulate voltage or power factor in power grids. First, the operating principle is introduced, and a mathematical model is built. Second, a new control method for restraining current harmonics and the peak voltages of capacitors is presented. Using the proposed method, the MERS shows a wide range in terms of reactive power compensation. Finally, the performance of the proposed controller is demonstrated through computer simulations and experiments. Unlike STATCOMs, the proposed controller entails low losses, adopts a small dc capacitor, and offers ease of use.

직렬 능동전력필터와 병렬 수동필터를 이용한 고조파 전류 저감 및 불평형 전원 전압 보상에 관한 연구 (A Study on Current Harmonics Reduction and Unbalanced Source Voltage Compensation Using Series Active Power Filter and Parallel Passive Filter)

  • 오재훈;고수현;한윤석;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.196-199
    • /
    • 2001
  • This paper deals with current harmonics and unbalanced source voltages compensation using combined filter system. Filter system consists of a series active filter and parallel passive filters. Passive filters were a traditional method to compensate current harmonics, so those were installed in power system widely. The active filter can be a substitution to improve filtering characteristics and complement drawbacks of the passive filter. The combined system of the active power filter and passive filter can has a better compensation performances and economical goods. The series type active power filter injects compensation voltage into power system by transformers. It's compensation principle is able to applicate for voltage compensation. A new control algorithm for series active filter to compensate current harmonics and unbalanced source voltages is proposed. In the proposed algorithm, a compensation voltage for harmonic reduction is calculated directly by instantaneous reactive power theory, and a compensation voltage for unbalanced source voltage is calculated in based on a synchronous reference frame. By experiments, we show validity of proposed compensation method.

  • PDF

A Novel Hybrid Active Power Filter with a High-Voltage Rank

  • Li, Yan;Li, Gang
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.719-728
    • /
    • 2013
  • A novel hybrid active power filter (NHAPF) that can be adopted in high-voltage systems is proposed in this paper. The topological structure and filtering principle of the compensating system is provided and analyzed, respectively. Different controlling strategies are also presented to select the suitable strategy for the compensation system. Based on the selected strategy, the harmonic suppression function is used to analyze the influence of system parameters on the compensating system with MATLAB. Moreover, parameters in the injection branch are designed and analyzed. The performance of the proposed NHAPF in harmonic suppression and reactive power compensation is simulated with PSim. Thereafter, the overall control method is proposed. Simulation analysis and real experiments show that the proposed NHAPF exhibits good harmonic suppression and reactive power compensation. The proposed compensated system is based on the three-phase four-switch inverter, which is inexpensive, and the control method is verified for validity and effectiveness.

A Hybrid Static Compensator for Dynamic Reactive Power Compensation and Harmonic Suppression

  • Yang, Jia-qiang;Yang, Lei;Su, Zi-peng
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.798-810
    • /
    • 2017
  • This paper presents a combined system of a small-capacity inverter and multigroup delta-connected thyristor switched capacitors (TSCs). The system is referred to as a hybrid static compensator (HSC) and has the functions of dynamic reactive power compensation and harmonic suppression. In the proposed topology, the load reactive power is mainly compensated by the TSCs. Meanwhile the inverter is meant to cooperate with TSCs to achieve continuous reactive power compensation, and to filter the harmonics generated by nonlinear loads and the TSCs. First, the structure and mathematical model of the HSC are discussed Then the control method of the HSC is presented. An improved reduced order generalized integrator (ROGI)-based selective current control method is adopted in the inverter to achieve high-performance reactive and harmonic current compensation. Meanwhile, a switch control strategy is proposed to implement precise and fast switching of the TSCs and to avoid changing the time delay needed by the conventional switch strategy. Experiments are implemented on a 20 KVA HSC prototype and the obtained results verify the validity of the proposed HSC system.

3상 Z-소스 하이브리드 능동전력필터 시스템 (Three-Phase Z-Source Hybrid Active Power Filter System)

  • 임영철;김재현;정영국
    • 전력전자학회논문지
    • /
    • 제15권1호
    • /
    • pp.75-85
    • /
    • 2010
  • 본 연구에서는 비선형 부하에서 발생되는 기본파 무효전력 및 고조파를 보상하기 위한 종전의 전압형 및 전류형 PWM 능동전력필터를 대체 할 수 있는 Z-소스 인버터 토폴로지의 하이브리드 능동전력필터에 대하여 고찰하였다. Z-소스 토폴로지의 능동전력필터의 보상 DC전원으로는 PEMFC가 사용되며, Z-소스 인버터의 shoot-through 듀티비의 조절에 의하여 낮은 연료전지의 전압을 높은 보상 전압으로 부스트 한다. 제안된 시스템은 병렬형 Z-소스 능동전력필터와 7차 고조파 (420Hz) 동조 필터로 구성되며, 이 구성에 의하여 Z-소스 능동전력필터의 스위치 디바이스의 전압 스트레스는 감소된다. 제안된 Z-소스 하이브리드 능동전력필터의 보상 알고리즘으로는 전류 동기 검출법이 사용되었다. 3상 220V/60Hz, 25A급 비선형 다이오드 부하 조건하에서 PSIM 시뮬레이션을 수행하였으며, 정상상태 및 과도상태에서의 제안된 시스템의 보상 성능을 파악하였다.

Design and Implementation of Instantaneous Power Estimation Algorithm for Unified Power Conditioner

  • S., Sindhu;M.R., Sindhu;Nambiar, T.N.P.
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.815-826
    • /
    • 2019
  • This paper discusses a simple control approach for a Unified Power Conditioner (UPC) system to achieve power quality compensation at the point of common coupling in distribution systems. The proposed Instantaneous Power Estimation Algorithm (IPEA) for shunt and series active power filters uses a simple mathematical concept that reduces the complexity in the design of the controller. The performance of a UPC is verified with a system subjected to voltage distortions, sags/swells and unbalanced loads using MATLAB/SIMULINK. The simulation study shows that a UPC with the proposed control algorithm can effectively compensate for voltage and current harmonics, unbalance and reactive power. The control algorithm is experimentally implemented using dSPACE DS1104 and its effectiveness has been verified.

싸이리스터 컨버터부하에 적용되는 병렬형 능동필터의 적정용량산정 (Capacity Requirement Estimation of Shunt Active Power Filter for Thyristor Converter Load)

  • 박노중;정승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권12호
    • /
    • pp.715-726
    • /
    • 1999
  • This paper estimates the capacity of shunt type active power filters(APF) for harmonic/reactive power compensation with a thyristor converter load. The base capacity requirement of APF is defined for idealized converter load current waveform and the effect of commutation overlap on the APF capacity is examined. The APF capacity required for reactive power compensation in addition to the harmonic elimination is estimated to give maximum achievable power factor for various operating condition of the partially-loaded thyristor converter. The method of current limit of APF is introduced, and it is shown that the APF capacity can be considerably reduced by deliberately limiting the peak current while maintaining the filtering performance to meet the level std 519 regulation.

  • PDF

A Grid Current-Controlling Shunt Active Power Filter

  • Tumbelaka, Hanny H.;Borle, Lawrence J.;Nayar, Chemmangot V.;Lee, Seong-Ryong
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.365-376
    • /
    • 2009
  • In this paper, the implementation of a three-phase shunt active power filter is presented. The filter is essentially three independent single-phase current-controlled voltage source inverters (CC-VSI) with a common DC bus. The CC- VSI is operated to directly control the AC grid current to be sinusoidal and in phase with the grid voltage without detecting the load currents. The APF consists of a current control loop, which shapes the grid currents to be sinusoidal and a voltage control loop, which regulates the active power balance of the system. The experimental results indicate that the active filter is able to handle predominantly the harmonics, as well as the unbalance and reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical.

유도전동기의 고조파 저감장치 성능 비교 분석 (Analysing and comparing efficiency of harmonic reduction equipment for Induction Motor)

  • 박양범;김두현
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.47-52
    • /
    • 2005
  • Recently, power conversion equipment increased rapidly makes a lot of harmonics. Thus, it is growing that wrong operation and break down of sensitive devices. There are two kinds of causes of harmonics. One of them is lots of power conversion equipment as modem controller, inverter, converter and SWS(Switching Mode Power Supply). Another is nonlinear operating machines as transformer and motor. The more nonlinear loads like them grow, the more serious problems as harmonic current to source and low power factor because of increasing reactive power grow. It is installed for reactor and L-C Filter to decrease harmonic in general. This paper analysis and compares two of characteristics and harmonic from reactor and L-C Filter with operation of induction motor and power conversion equipment. In the result, L-C Filter more improves unbalance rate and THD than reactor.

전류제어형 PWM 컨버터에 의한 순시 무효전력 보상장치 (Instantaneous Reactive Power Compensator using Current Controlled PWM Converter)

  • 최재호;김상훈;박민호
    • 대한전기학회논문지
    • /
    • 제38권7호
    • /
    • pp.539-548
    • /
    • 1989
  • 본 논문에서는 싸이리스터 부하에서 발생하는 무효전력과 고조파를 보상하기 위한 순시무효전력 보상장치에 관하여 기술하였다. 저자는 기본파 위상 지연과 고조파 전류외형에 기인하는 순시무효전력을 새로이 정의하고 순시전력흐름의 관점에서 그 물리적 의미를 고찰하였다. 순시전압 및 순시전류의 궤환에 의해 순시무효전력을 계산하고, 이를 부하와 병렬로 연결된 전류제어형 PWM컨버터에 의해 보상하였다. PWM컨버터는 전류오차 백터제어방식에 의한 전류제어 PWM 기법을 사용함으로써 우수한 전류제어특성을 실현할 수 있었다. 시뮬레이션과 실험을 통하여 정상상태 및 과도상태에서의 탁월한 보상특성이 입증되었다.