• 제목/요약/키워드: Harmonic vibration

검색결과 628건 처리시간 0.037초

내연기관 크랭크축계 종진동에 관한 연구 (제2보 : 크랭크축계 종진동의 공진진폭계산) (The Axial Vibration of Internal Combustion Engine Crankshaft (Part II. Resonant Amplitudes Calculation of the Crankshaft Axial Vibration))

  • 김영주;고장권;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.69-91
    • /
    • 1982
  • The major factors which affect the crankshaft axial vibration are such items as the axial stiffness and mass of crankshaft, the thrust block stiffness, the propeller's entrained water and the exciting and damping forces of engine, propeller and shafting. Among above mentioned items, the axial stiffness and mass of crankshaft, thrust block stiffness and propeller's entrained water were treated in detail in part I, and so in this paper, the rest of above items will be studied. The exciting forces of crankshaft axial vibration are generated mainly from the gas explosion pressure of cylinder, the thrust fluctuation of propeller, and sometimes the torsional vibration of crankshaft induces the crankshaft axial vibration. As for the propeller thrust fluctuation, its harmonic components can be fairly exactly calculated from the experimental results of propeller in the towing tank, but as the calculation process is rather tedious and laborious, the empirical values are ordinarily used. On the other hand, the table of harmonic components of gas pressure has been already published by major slow speed diesel engine makers, but the axial thrust conversion factor of radial force is not unknown yet, and as its estimated value is unreliable, the axial vibration force of gas pressure is uncertain. As the calculation of damping force is very complicated and it includes some uncertain factors, the thoretically estimated amplitudes of axial vibration are much more incorrect in comparison with those of torsional vibrations. Authors have paid special attentions to deriving the theoretical calculation formula of axial conversion factor of radial force and damping force of crankshaft axial vibration and developed a computer program to calculate resonance amplitudes and additional stresses of crankshaft axial vibrations. Also, to check the reliability of the developed computer program, the axial vibrations of three ships' propulsion shaftings were analyzed and their results were compared with those of measured values and makers' results.

  • PDF

굴삭기휠의 형상별 구조 강도에 대한 내구성 연구 (Durability Study on Structural Strength due to the Shape of Excavator Wheel)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.

인공위성 반작용휠의 미소진동 측정 및 분석

  • 오시환;이승우
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.25-33
    • /
    • 2004
  • 본 논문에서는 인공위성 반작용휠의 미소진동 측정을 위한 테스트 장비와 이를 이용하여 실측한 반작용휠의 미소진동을 측정 및 분석 결과를 소개한다. 위성의 미소진동은 KISTLER dynamic platform 이라는 400Hz 이내의 3축의 힘과 3축의 토크를 동시에 측정할 수 있는 장비에 의해 측정되며 측정된 데이터는 회전 속도에 따라 3차원 주파수 분석, order tracking 등의 방법을 이용하여 분석된다. 반작용휠의 미소진동 분석 결과, 회전 속도와 비례하는 일차 성분 외에 고차 조화 성분, 구조 진동 성분, 회전 속도에 따라 고유진동수가 변하는 rocking 모드 성분 등을 관찰할 수 있었으며, 휠의 정적 및 동적 불균형은 각각 0.79gcm과 17.4gcm²으로 나타났다. 이러한 다양한 진동 성분들은 회전체의 특성, 구조물의 특성 및 베어링의 영향으로 기인한다.

  • PDF

자동차용 브레이크 드럼의 구조-음향 특성에 관한 연구 (Vibro-acoustic Characteristics of an Automotive Brake Drum)

  • 이형일
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.836-843
    • /
    • 2016
  • This study investigates the vibro-acoustic characteristics of an automotive brake drum given free boundaries using the hybrid approach combining numerically obtained structural properties with analytical solution for acoustic radiation. Structural vibrations of the drum are investigated with the finite element method, and modal displacements on the outer surfaces of the drum are idealized as simple mathematical expressions. Based on the expressions, modal sound radiations of the drum are calculated using the Rayleigh integral method. Structural and acoustic responses of the drum for a harmonic excitation are obtained from above results using the modal expansion technique. The results are confirmed with numerical analyses using the boundary element method. Based on these results, it can be concluded that the vibro-acoustic characteristics of a brake drum can be accurately investigated with the process used in this study. Also, many noise and vibration problems in drum brake can be addressed using the procedure proposed in this study.

Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix

  • Besseghier, Abderrahmane;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Benzair, Abdelnour
    • Advances in nano research
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2015
  • In the current study, the nonlinear vibration properties of an embedded zigzag single-walled carbon nanotube (SWCNT) are investigated. Winkler-type model is used to simulate the interaction of the zigzag SWCNTs with a surrounding elastic medium. The relation between deflection amplitudes and resonant frequencies of the SWCNT is derived through harmonic balance method. The equivalent Young's modulus and shear modulus for zigzag SWCNT are derived using an energy-equivalent model. The amplitude - frequency curves for large-amplitude vibrations are graphically illustrated. The simulation results show that the chirality of zigzag carbon nanolube as well as surrounding elastic medium play more important roles in the nonlinear vibration of the single-walled carbon nanotubes.

능동 엔진 마운트 제어용 Active Linear Actuator를 이용한 외팔보 능동진동제어 실험 (Active Vibration Control Experiment of Cantilever Using Active Linear Actuator for Active Engine Mount)

  • 양동호;곽문규;김정훈;박운환;심호석
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1176-1182
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

회전체에서의 균열 방위 결정 (Identification of Crack Orientation in a Simple Rotor)

  • Jun, Oh Sung;Lee, Chong-Won;Lim, Byoung Duk
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.209-214
    • /
    • 1997
  • 균열을 가진 회전축은 고조파성분이 진동에 나타나는 특징을 갖는다. 이 고조파성분을 균열탐지에 활용하기 위하여는 이들이 크게 발생되는 회전수를 이용할 필요가 있다. 2차고조파공진속도를 정의하여 이 속도에서의 균열과 불균형질량 방위각에 따른 고조파 진동 특성을 단순회전체에서 설명하였다. 이 특성을 이용하여 균열의 위치를 나타낼 수 있는 알고리즘을 만들고 수치실험을 하여 타당성을 보였다.

  • PDF

클러치의 구조 안전 해석 (Structural Safety Analysis of Clutch System)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.148-155
    • /
    • 2011
  • This study analyzes stress, fatigue and vibration at clutch on the rotation of wheel. Eigenfrequencies from 1'st to 6'th order about clutch assembly are shown with the vibration at more than 800Hz. Maximum equivalent stress is shown with the frequency of 800Hz in case of the harmonic vibration applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample History' with the average stress of 0MPa to $-10^5$ MPa and the amplitude stress of 0MPa to $10^5$ MPa, the possibility of maximum damage becomes 3.23%. This stress state can be shown with 6 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the safe design of clutch.