• Title/Summary/Keyword: Harmonic source

Search Result 514, Processing Time 0.023 seconds

Analysis of continuous conduction mode boost power-factor-correction circuit (부스트 방식 역률개선회로의 설계와 특성분석)

  • Kim, Cherl-Jin;Jang, Jun-Young;Kim, Sang-Duck;Song, Yo-Chang;Yoon, Shin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1120-1122
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor improvement and harmonic reduction technique is very important in switching power supply. The power factor correction (PFC) circuit using boost converter used in input of power source is studied in this paper. It is analyzed distortional situations and harmonics of input currents that presented at continuous conduction mode(CCM) of boost PFC circuit. It is done simulations of harmonics distribution according to load variation by using PSPICE and MATLAB. From the actual experiment of boost PFC circuit the validity of the analysis is confirmed.

  • PDF

Neutral Current Compensation Using Single Phase Active Power Filter in Three-Phase Four-Wire Electric Distribution Systems (3상 4선식 배전계통에서 단상 능동필터를 이용한 중성선 전류의 보상)

  • Choi, See-Young;Kim, Byung-Seob;Song, Jong-Hwhan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1046-1048
    • /
    • 2002
  • The increase of triplen harmonics in three-phase four-wire systems leads to overloaded neutral conductor, common-mode noise problems, derating of transformers, and so on. Various compensator has been designed to prevent the problems associated with the triplen harmonics. But these can not protect distribution system effectively because the triplen harmonic source is distributed extensively and distribution system type is diverse. This paper explain the operation and installation of single phase active power filter to eliminate triplen harmonics and then it is verified by simulation.

  • PDF

A study on wind load characteristics of wind turbines (풍력발전기의 풍하중특성에 관한 연구)

  • Kim, Jung-Su;Park, Noh-Gill;Kim, Young-Duk;Kim, Su-Hyub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.124-129
    • /
    • 2010
  • Wind load characteristics is investigated for vibration analysis of wind turbine gearbox. A normal wind model assumed, of which the wind velocity is increased according to the height from ground. A blast wind model is assumed, of which the maximum velocity is located at the center and the velocity profile is normally distributed. The periodical torque and bending moments transmitted to the main shaft of wind turbine are investigated. The average values and the harmonic terms of the transmitted moments are studied on the wind direction of range $-45^{\circ}{\sim}45^{\circ}$ and the bending moment characteristics are examined, which is regarded as the main source of the misalignment of gear train.

  • PDF

Current Decoupling Control for the Three-level PWM Rectifier with a Low Switching Frequency

  • Yuan, Qing-Qing;Xia, Kun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.280-287
    • /
    • 2015
  • Three-level PWM rectifiers applied in medium voltage applications usually operate at low switching frequency to keep the dynamic losses under permitted level. However, low switching frequency brings a heavy cross-coupling between the current components $i_d$ and $i_q$ with a poor dynamic system performance and a harmonic distortion in the grid-connecting current. To overcome these problems, a mathematical model based on complex variables of the three-level voltage source PWM rectifier is firstly established, and the reasons of above issues resulted from low switching frequency have been analyzed using modern control theory. Then, a novel control strategy suitable for the current decoupling control based on the complex variables for $i_d$ and $i_q$ is designed here. The comparisons between this kind of control strategy and the normal PI method have been carried out. MATLAB and experimental results are given in detail.

Input AC Voltage Sensorless Control Scheme for a Three-Phase PWM Rectifier in Wind Power Generation System

  • Wu, YanJun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.472-476
    • /
    • 2012
  • In this paper, a sensorless control scheme for a three-phase bi-directional voltage-type PWM rectifier in wind power generation system that operates without the input AC voltage sensors (generator side) is described. The basic principles and classification of the PWM rectifier are analyzed, and then the three-phase mathematical model of the input AC voltage sensorless PWM rectifier control system is established. The proposed scheme has been developed in order to lower the cost of the three-phase PWM rectifier but still achieve excellent output voltage regulation, limited current harmonic content, and unity input power factor.

Output Voltage Regulation for Harmonic Compensation under Islanded Mode of Microgrid

  • Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.464-475
    • /
    • 2017
  • This study examines a P+multi resonant-based voltage control for voltage harmonics compensation under the islanded mode of a microgrid. In islanded mode, the inverter is defined as a voltage source to supply the full local load demand without the connection to the grid. On the other hand, the output voltage waveform is distorted by the negative and zero sequence components and current harmonics due to the unbalanced and nonlinear loads. In this paper, the P+multi resonant controller is used to compensate for the voltage harmonics. The gain tuning method is assessed by the tendency analysis of the controller as the variation of gain. In addition, this study analyzes the slight voltage magnitude drop due to the practical form of the P+multi resonant and proposes a counter method to solve this problem by adding the PI-based voltage restoration method. The proposed P+multi resonant controller to compensate for the voltage harmonics is verified through the PSIM simulation and experimental results.

Five-Level PWM Inverter Using Series and Parallel Alternative Connection of Batteries

  • Park, Jin-Soo;Kang, Feel-soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.701-710
    • /
    • 2017
  • This paper presents a five-level PWM inverter using series and parallel connection of voltage sources. The alternative connection is done by an auxiliary circuit consisted of a switch, three diodes, and two batteries. The auxiliary circuit is located between input dc voltage source and H-bridge cell. Thanks to the auxiliary circuit, the proposed inverter synthesizes five-level output voltage in an effective way. Topologically both batteries are charged and discharged in the same rate, so it does not need to apply battery voltage balancing control method. Theoretical analysis of the proposed inverter is verified by computer-aided simulation and experiment based on a prototype of 1kW.

Analysis of Input Characteristic in the Rectifier for Output Filter with Unbalanced Supply Voltages (불평형 전원전압을 갖는 정류시스템에서 출력필터에 따른 입력 특성 분석)

  • Kang, Su-Heon;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.195-202
    • /
    • 2005
  • The rectifier characteristics and the quality of the input current worsens with the increase of unbalances or harmonics of the supply voltages. Rectifier input current harmonics interfere with proper power system operation, reduce rectifier power factor, and limit the power available from a given source. It is of importance to select appropriately the rectifier's output filter inductance to determine the rectifier input current waveform, the input current harmonics, and the power factor. This paper presents a quantitative analysis of single and three phase rectifier input current harmonics, total harmonic distortion, and power factor as a function of the output filter inductance under balanced and unbalanced conditions. Also, its performance under the supply voltage including harmonics be investigated. These results provide a reference for selecting reasonable rectifier's output filter inductance for given harmonics or power factor criterion.

  • PDF

Hysteresis Current Control with Self-Locked Frequency Limiter for VSI Control (자기동조 주파수 제한기를 갖는 전압원 인버터의 히스테리시스 전류제어)

  • Choe, Yeon-Ho;Im, Seong-Un;Gwon, U-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.23-33
    • /
    • 2002
  • A hysteresis control is widely used to control output current of inverter. A hysteresis bandwidth is affected by system parameters such as source voltage, device on/off time, load inductance and resistance. The frequency limiter is used to protect switching devices overload. In the conventional hysteresis controller, a lock-out circuit with D-latch and timer is used to device protection circuit. But switching delay time and harmonic components are appeared in output current. In this paper the performance of lock-out circuit is tested, and new circuit for switching device fault protection is proposed ad it's performance is simulated.

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage with Harmonics Components (고조파 성분이 포함된 전압 불평형 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.134-140
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are usually balanced and connected to three power systems. However, in the user power distribution systems, partial loads are single & three phase and unbalanced, generating voltage unbalance by the impedance mismatching. Voltage unbalance has detrimental effects on three-phase induction motors, including over heating, line-current unbalance, derating, torque pulsation, low efficiency, etc. This paper presents a scheme on operation states of a three-phase induction motor under the unbalanced voltages with harmonics components. Three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting not only fundamental but also harmonics components. Harmonic components at the voltage unbalanced factor(VUF) of the three-phase source voltages can then be examined the different values of VUF on machine's operation characteristics.