• Title/Summary/Keyword: Harmonic operation

Search Result 396, Processing Time 0.022 seconds

Analysis and Control of Cost-Effective Topologies for Single Phase to Three Phase Power Converter (비용절감형 단상-삼상 전력변환기 구조의 해석 및 제어)

  • Lee, Hae-Chun;Park, Tae-Yeol;Kim, Gi-Taek
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.217-226
    • /
    • 1999
  • A single phase to three phase power converter with cost effective and simple structure is proposed. The converter consists of rectifier and inverter. The rectifier is composed of a half wave rectifier, a dc link capacitor, and a current limiting inductor, and the inverter is of only two switches with PWM control. For negative sequence operation the inverter output voltage leads the line input by $60^{\circ}$, and for positive sequence operation the inverter output voltage leads by $60^{\circ}$. We can see that positive sequence operation shows higher output voltage, slight harmonic distortion(2%), and better performances such as high efficiency and high power factor. A mathematical model for system analysis is provided, and specifications for selection and control scheme both for start-up and for steady state are analyzed. comparison and operational limits of positive and negative sequence operation are performed, and simulations and experiments are executed to verify the proposed.

  • PDF

Design of Dualband Class-F PAs for Cellular and WLAN Applications

  • Lee, Chang-Min;Park, Young-Cheol;Yoon, Hoi-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.6-12
    • /
    • 2010
  • In this paper, highly efficient class-F power amplifiers(PAs) with harmonic-controlling transmission lines(TLs) were built for cellular and WLAN applications at 840 MHz and 2.4 GHz each. Also, based on these single-band PAs, a dualband class-F PA was designed after a careful investigation into the harmonics of the two frequencies. The harmonic-controlling TL was designed for the class-F operation at dualband by switching the length of the shunt $\lambda$/4 TL part, while the series $\lambda$/4 TL is optimized for both frequencies. To verify the performance, two class-F PAs optimized at each frequency and a dualband class-F PA at the corresponding frequencies were built with the secondand the third-harmonic control circuits at each frequencies. As a result, the PA#1 at 840 MHz has a peak drain efficiency of 81.2 % with an output power of 24.4 dBm, while the PA#2 at 2.35 GHz shows a drain efficiency of 94.5 % with an output of 22.8 dBm. Finally, the dualband class-F PA#3 showed 60.5 % and 50.9 % drain efficiencies at 840 MHz and 2.4 GHz, with powers of 23.8 dBm and 19.62 dBm, respectively.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

A Study on the Power Quality Characteristics of Customers by the Operation of Single Phase PV System (단상용 태양광발전의 연계에 의한 수용가 전력품질 특성에 관한 연구)

  • Kim, Byung-Ki;Park, Oh-Sung;Kim, Byung-Mok;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.155-158
    • /
    • 2010
  • 태양광전원이 연계되어 운용되고 있는 저압배전선로에 Sag, Swell 발생에 따른 태양광전원의 불안정한 운전과 태양광전원의 높은 왜형율의 Harmonic 발생에 따른 배전계통의 보호계전기(OCGR) 동작 등 전력 품질에 있어서 문제점이 발생되고 있다. 이러한 문제점은 사회적, 경제적 손실을 초래하게 되어, 전력품질(Sag, Swell, Harmonic, 모터기동)특성해석이 중요하다. 따라서 본 논문에서는 태양광전원이 연계되어 정상 운용 중인 배전계통에 대한 전력품질특성시험을 수행하기 위하여, 모의 배전계통장치와 모의 태양광전원장치, Labview용 감시제어장치로 구성한 태양광전원용 전력품질시험장치를 제작하였다. 이 시험장치를 이용하여 태양광전원 연계 시 Sag, Swell, Harmonic, 모터기동에 대한 시험을 수행하여 태양광전원이 배전계통에 미치는 영향과 특성을 분석하였다.

  • PDF

Characteristic Analysis of Power Compensation Condenser Considering Voltage Harmonics (전압 고조파를 고려한 역률보상용 콘덴서의 특성 분석)

  • Kim, Jong-Gyeum;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.141-145
    • /
    • 2010
  • Most of the industrial loads includes the non-linear load as well as the linear load because there are many kinds of power conversion equipments at the input stage of the load in distribution network. The non-linear load causes the distortion of voltage waveform at PCC because the non-linear load generates the harmonic current. As a result, various voltage harmonics are existed at PCC depending on the current harmonics from the non-linear load. And, a series reactor is generally connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. Then, these capacitors might be damaged by the excessive voltage and current harmonic components. In this paper, we presented how to select the capacitor and series reactor to meet the requirement of the voltage distortion at PCC and analyzed the voltage, current and capacity rating of the power capacitor by the computer simulation to ensure the safe operation of power capacitor when the voltage harmonics at PCC are existed. Also, the analysis data were compared with the experimental measurements for the verification.

Configurations of High Power VSI Drives for Traction Applications Using Multi Level Inverters and Multi Phase Induction Motors (멀티레벨 인버터와 다상 유도기를 이용한 견인기용 대전력 VSI의 구조와 특성)

  • Gopakumnr, K.;Ryu, Hong-Je;Kim, Jong-Su;Im, Geun-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.500-504
    • /
    • 1997
  • Current source inverter drives of auto sequentially commutated type are very popular in high power applications, because of simple power circuit configuration with four quadrant operation. But the six-step current output create harmonic problems and the input power factor of such a drive is not always good. In this respect pulse width modulated drives using gate turn off thyristors ( GTO ) are finding application, especially in traction drives. However the switching and snubber loses of a GTO do not permit the inverter switching frequency go beyond a few hundred hertz.This will again introduce low frequency harmonic problems. Multi level inverters of the 3-level and 5-level can be considered as an alternative to overcome the low switching frequency harmonic problem of the 2-level GTO inverters. But with multi level inverters the complexity of the power circuit increases. In this paper a combination of multi level ( 2-level and 3-level ) inverters and multi phase induction motor ( 3-phase and 6-phase) configurations are presented for high power VSI drives for traction applications with reduced inverter switching frequency requirements coupled with reduced voltage rating for the power switch.

  • PDF

Harmonics Measurement of the Running Test EMU Train in Conventional Railway Lines (일반철도선로에서의 전동차 시험운행에 대한 고조파 측정연구)

  • Han, Seong-Ho;Shon, Jin-Geun;Kim, Young-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.77-83
    • /
    • 2016
  • The electric quality of train is represented by voltage and current harmonics at PT(Ratio 25,000/15/[V]) which is located between pantograph and primary winding of train transformer. In this paper, voltage and current harmonics were measured on the test EMU(electric multiple unit)train with maximum speed of 180km/h in existing railway lines(chungbuk, Taeback, Honam). As a results of test, it is found that the electric quality of train depends on the mostly operation conditions which is accelerating mode and braking mode on each sections. Voltage THD is above all 3[%] and current harmonics is monitored from lowest Harmonic to highest Harmonic in case of accelerating mode. But, highest current harmonics is not monitored in case of breaking mode. The results in this paper can help to stabilize the power device and power converter of the test EMU train.

A 2.4 GHz-Band 100 W GaN-HEMT High-Efficiency Power Amplifier for Microwave Heating

  • Nakatani, Keigo;Ishizaki, Toshio
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • The magnetron, a vacuum tube, is currently the usual high-power microwave power source used for microwave heating. However, the oscillating frequency and output power are unstable and noisy due to the low quality of the high-voltage power supply and low Q of the oscillation circuit. A heating system with enhanced reliability and the capability for control of chemical reactions is desired, because microwave absorption efficiency differs greatly depending on the object being heated. Recent studies on microwave high-efficiency power amplifiers have used harmonic processing techniques, such as class-F and inverse class-F. The present study describes a high-efficiency 100 W GaN-HEMT amplifier that uses a harmonic processing technique that shapes the current and voltage waveforms to improve efficiency. The fabricated GaN power amplifier obtained an output power of 50.4 dBm, a drain efficiency of 72.9%, and a power added efficiency (PAE) of 64.0% at 2.45 GHz for continuous wave operation. A prototype microwave heating system was also developed using this GaN power amplifier. Microwaves totaling 400 W are fed from patch antennas mounted on the top and bottom of the microwave chamber. Preliminary heating experiments with this system have just been initiated.

A Study on the Propagation of Harmonic Current in the Traction Power Supply System (철도 전력공급시스템에서의 고조파전류 확대현상에 관한 연구)

  • Oh, K.H.;Chang, S.H.;Han, M.S.;Lee, C.M.;Shin, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.908-910
    • /
    • 1998
  • Modern AC electric car has PWM(Pulse Width Modulation) -controlled converters, which give rise to higher harmonics. The current harmonics injected from AC electric car is propagated through power feeding circuit. As the feeding circuit is a distributed constant circuit composed of RLC, the capacitance of the feeding circuit and the inductance on the side of power system cause a parallel resonance and a magnification of current harmonics at a specific frequency. The magnified current harmonics usually brings about various problems. That is, the current harmonics makes interference in the adjacent lines of communications and the railway signalling system. Furthermore, in case it flows on the side of power system, not only overheating and vibration at the power capacitors but also wrong operation at the protective devices can occur. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. From these point of view, this study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current. The proposed algorithm is applied to a standard AT(Auto-transformer)-fed test system in which electric car with PWM-controlled converters is running.

  • PDF

Effective Harmonic Diagnose Tool for Power Quality Problems (전기품질개선을 위한 효율적인 고조파 진단 툴 개발)

  • 설용태;이의용
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.63-68
    • /
    • 2002
  • In this paper harmonic diagnose tool is described for electric evaluate the power quality at industrial power systems is described both simulation and experimental testing during various operation conditions. PTW (Power Tools for Windows) and harmonic measuring instrument are organized around personal computer and/or instrumentation study environments interconnected via RS-232. Unknown zero sequence impedance data of cable is calculated by the modified T&D and BICC method. IEEE standard is also used to estimate the transformer input data. the proposed system provides a flexible and effective environment to diagnose the power quality at industrial distribution systems by utilizing simulations and actual field data.

  • PDF